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Abstract. This document discusses some strategies for statistical disclosure limitation de-
veloped under the CASC project for treatment of business microdata. The deliverable mainly
results from the composition of different proposals that have been previously or are to be
published in the literature by the authors. First, a general framework for microdata pro-
tection is sketched, as appears in Polettini, Franconi and Stander (2002); second, a model
based method especially designed for the release of business microdata is outlined, following
the proposal in Franconi and Stander (2002) and the experiences reported in Polettini et al.
(2002). A new proposal by Burridge, stemming from the work by Franconi and Stander
(2002) is described. Finally, an alternative simulation based protection method, discussed in
Polettini and Franconi (2002), is outlined.
Keywords: business microdata, confidentiality, performance assessment, perturbation, pro-
tection models, regression models, simulation.

1 Introduction

Dissemination of microdata that allow for reanalysis by different users with different aims is the
challenge that NSIs have been facing in the last few years.

The motivating example of the deliverable is the disclosure limitation of microdata from the
Community Innovation Survey of manufacturing and services sector enterprises. This will be dis-
cussed in detail in Section 3. Business surveys such as the Community Innovation Survey often
pose particular problems for disclosure limitation methodology. There are several reasons for this.
First, in order to provide the best possible representation of the population, business survey de-
signs include the largest and most identifiable enterprises with probability one; see Cox (1995).
Secondly, very detailed public registers are available that contain the names of enterprises together
with such features as their main economic activity, geographical area and number of employees.
Accordingly, the match between public registers and an unprotected sample can often be an easy
task, especially when a priori information such as knowledge about the inclusion of an enterprise
in the sample is available. In this case identification and hence disclosure is accomplished without
too much difficulty.

For the reasons just mentioned disclosure limitation of business microdata requires the use
of methods that either perturb the original data or sample from the distribution originating the
data themselves. Examples of such methods include masking procedures (Duncan and Pearson,
1991; Cox, 1994), data swapping (e.g. Dalenius and Reiss, 1982), and simulation from relevant
distributions (see Fienberg, Makov and Steele, 1998 and references therein). These approaches are
not completely satisfactory. In some cases the perturbation imposed on the data to protect the
enterprises has to be so large that the errors induced in any subsequent analysis are extremely
severe. In other cases, the level of perturbation imposed may not be sufficient to protect the data.
Finally, some of the simulation processes that have been suggested can be difficult to implement.

1.1 Plan of the paper

In Part I of this document, as in Polettini et al. (2002), we argue that any microdata protection
strategy is based on a formal reference model. We use this paradigm to show that different disclosure
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limitation methods presented in the literature can be seen in a unified manner, distinguishing
themselves according to the degree and number of restrictions imposed on the model.

In Part II we describe the disclosure limitation methodology based on regression models pro-
posed in Franconi and Stander (2002). Section 4.1 outlines the method, which builds regression
models for the continuous variables to be protected, and bases the released versions of these vari-
ables on the fitted values from these regressions. The assessment of the performance of disclosure
limitation methods is discussed in Section 5. In particular, methods of quantifying the level of
protection achieved for the file and the error induced by this protection are presented. A popular
procedure for disclosure limitation is based on microaggregation; see Defays and Anwar (1998) for
example. Section 5.3 briefly illustrates how single axis microaggregation can be applied to data
from the Community Innovation Survey.

In Section 5 and 6 we also present the results of the application of this model to the Italian
sample of the Community Innovation Survey (CIS), as in Franconi and Stander (2002) and Po-
lettini et al. (2002). The experience with CIS data reveals some issues that need to be addressed,
such as the use of robust methods, the suitable choice of some parameters, the diagnosis of the
protection model, the usefulness of the data and so on.

Section 7 contains some discussion.
Part III describes an alternative approach to data perturbation stemming from the work by

Franconi and Stander (2002). This research work has been conducted by Burridge, who suggested
that the information related to the assumed model for the data - such as a simple regression
model for instance - could be explicitly preserved by using ideas of sufficiency and conditional
sampling from mathematical statistics. The resulting method of perturbing data has been termed
Information Preserving Statistical Obfuscation (IPSO). Section 8 introduces the basic idea of the
model, while Sections 9 to 11 describe application of this idea to multivariate continuous data,
mixed continuous and discrete data, and discrete categorical data respectively.

Part IV sketches a simulation approach based on the maximum entropy formalism. This work
has been discussed in Polettini and Franconi (2002). Under this approach, the real data are used
to estimate a model which preserves some characteristics that have been fixed in advance. The role
of simulation methods in data protection is briefly discussed in Section 12; Section 13 outlines the
maximum entropy formalism.

Finally Section 14 contains considerations concerning the implementation into Argus of some
of the methodologies discussed.



Part I

A Methodological Framework for
Data Protection

2 A Unified Framework for Model Based Protection

In this section we express our view about protection methods for data confidentiality. We present
a unified framework in which each protection method has its own reference model, at least in a
broad sense. The extent of specification of such model yields “parametric”, “semiparametric”, or
“nonparametric” strategies. Following this classification, a parametric probability model, such as
a normal regression model, or a multivariate distribution for simulation can be specified. Matrix
masking (Cox, 1994), covering local suppression, coarsening, microaggregation (Domingo-Ferrer
and Mateo-Sanz, 2002), noise injection, perturbation (e.g. Kim, 1986; Fuller, 1993), provides ex-
amples of the second and third class of models. Finally, a nonparametric approach (e.g. Dandekar,
Cohen and Kirkendall, 2001) can be adopted.

In our view, in order to release protected data the NSIs have basically two options:

1. coarsening, e.g. transforming the data (rows or columns of the data matrix). An extreme version
of this consists of artificially introducing missing values (local suppression), which includes
subsampling as a special case;

2. simulating artificial data set(s) or records.

Coarsening consists of transforming the data by using deterministic or random functions, either
invertible or singular. Little (1993) suggests releasing a summary of the data themselves, such as
a set of sufficient statistics for the assumed model. An aggregated (marginal) table for categorical
data is an example of this. This is also an example of a non invertible transformation -unless
the sufficient statistic achieves no reduction of the data. At the extreme of such an approach is
reducing the sensitive information carried by the data by artificially introducing missing values.
In both cases, Little (1993) discusses post-release analysis of protected data by means of exact or
approximate (“pseudo”) likelihood inference, heavily relying on the EM algorithm (see Dempster,
Laird and Rubin, 1977; Little and Rubin, 1987).

Full imputation, i.e. generation of a set of artificial units, is an alternative option for NSIs.
The idea of releasing a synthetic sample seems a way to avoid any confidentiality threat, as the
confidentiality of synthetic individuals is not of concern. Rubin (1993) proposes using multiply-
imputed data sets for release, and states the superiority of this approach over other methods of
data protection. Difficulties in application of these ideas are documented by Kennickell (1998).

The idea of simulation is connected with the principle that the statistical content of the data
lies in the likelihood, not in the information provided by the single respondents. Consequently, a
model well representing the data could in principle replace the data themselves; alternatively, a
simulated data set (or a sample of data sets) drawn from the above mentioned model can represent
a more user-friendly release strategy. Indeed, since the proposal of Rubin (1993), several authors
have stated the usefulness of disseminating synthetic data sets; see Fienberg, Makov and Steele
(1998), and, more recently, Grim, Boček and Pudil (2001) and Dandekar et al. (2001; 2002b). In
the choice of the generating model, the aim is always to reproduce some key characteristics of the
sample.

Each of the alternative options discussed so far can be considered an imputation procedure: a
protection model is formalized and released values are generated according to it in substitution of
the original ones.

In the sequel, we will consider an observed data matrix X of dimension n by p; the columns
of X will correspond to variables and will be denoted by Xl, l = 1, . . . , p. A tilde will denote the
corresponding released quantities, so that X̃ will denote the released matrix, X̃l the released l-th
variable.
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We suggest that the basic ingredient of any technique of statistical disclosure control is the
protection model. As illustrated by the examples provided above, by protection model we mean a
relation expressing the protected data in terms of the original data by means of some transformation
function. Using this formulation, for the released data X̃ a class of distributions can be specified
either directly, or through assumptions about the family of laws governing the matrix X. The
degree of specification of the distributional component in the protection model varies from model
to model. Some methods make no distributional assumptions, some others specify a parametric
class for the probability law of the released data through assumptions on the original data matrix.
Moreover, sometimes only a component of the protection model is given a fixed distribution. In
some cases, only some characteristics of the distributions, such as conditional means, are specified.
In this sense we will distinguish between fully nonparametric, semiparametric and fully parametric
models, and from these devise nonparametric, semiparametric and fully parametric methods for
data confidentiality. In this view, it is the extent of formalization of the model which makes the
strategies inherently different.

2.1 Nonparametric Protection Methods

Suppose that the distribution of X̃ is left completely unspecified. Suppose further that the protec-
tion model for the released matrix X̃ has the form of a matrix mask, X̃ = XB. The last expression
is a compact notation encompassing several different imputation procedures, as discussed in Lit-
tle (1993) and formalized in Cox (1994). As the latter author has shown, this protection model
may provide locally suppressed, microaggregated or swapped data depending on the choice of the
attribute transforming mask B.

Use of an additive component in the mask accounts for other types of transformations, such as
topcoding. In this case, the model takes the more general form X̃ = XB + C.

Exclusion of selected units is accomplished by using a different matrix mask, acting on the rows:
X̃ = AX, A being termed a record transforming mask.

Finally, exclusion of selected units followed by deletion of some pre-specified attributes is ac-
complished by the more general matrix mask X̃ = AXB; actually Cox (1994) uses the more general
notation X = AXB + C.

For protection by simulating artificial data sets, the use of procedures such as the bootstrap, or
modified versions of it, give rise to nonparametric disclosure limitation strategies. An example of
this is the proposal in Dandekar et al. (2001; 2002b) based on Latin Hypercube Sampling. The work
by Fienberg et al. (1998) discusses analogous strategies that we would classify as nonparametric
protection methods.

2.2 Semiparametric Protection Methods

In the previous paragraph, the model contains nothing but the empirical distribution of the data,
plus known constants. A semiparametric structure is introduced through assumptions about the
masking matrices A, B and C and/or the observed matrix X.

In particular, let us introduce a random matrix C having a known distribution. Then the
masked matrix X̃ obtained by adding to AXB a realization of C represents a perturbation of the
original data. Of course, C could be masked by introducing a column-selecting matrix D to be
used whenever a variable need not be noise injected. In the context of database protection, Duncan
and Mukherjee (2000) analyze the extent to which the perturbation method can be applied if valid
(e.g. precise) inferences about parameters of interest are to be drawn. In particular, they discuss
bounds on the variance of the noise distribution.

A particular case of semiparametric masking is the model discussed in Little (1993), which
replaces the observed data by the sample mean plus random noise, obtained by setting A = 1n×p.
The model just discussed in general prescribes for the data to be released a convolution of the
distribution of the data, possibly after suitable transformation, with the noise distribution.

For a thorough, up-to-date discussion of noise injection, refer to the paper by Brand (2002).
We also define semiparametric the imputation model based on least squares regression; it is

a semiparametric version of the naive strategy based on the release of sample mean. The model
prescribes a relation between a variable Xl to be protected and a set of covariates extracted from
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the observed matrix X, that we will denote by XK\l, K ⊆ {1, 2 . . . , p}, without further assumptions
on the error distribution. For a similar argument, see Little (1993).

2.3 Parametric Models

A step further is represented by the specification of a class of distributions for the released data. If
the variables are continuous, very often the multivariate normal distribution is used, possibly after
a normalizing transformation.

One option in model based protection is disseminating the fitted values of a normal regression
model for one or more variables Xl in X; this is the main idea in Franconi and Stander (2002). A
slight variation (see Little, 1993) of the regression method consists of releasing the predicted value
plus random noise, taken from the estimated error distribution. This aims to compensate for the
reduction of variability of the fitted values compared to that of the original data.

Of course the protection strategy based on regression models may be confined to some of
the units of the data matrix; in the previous notation, this may be represented symbolically as
X̃l = A(XK\lβ̂ + η), η ∼ N(0, σ̂2

Xl|XK\l
).

Another example of parametric disclosure protection is the release of prediction intervals for the
variables to be protected, based on distributional assumptions, with or without a regression model
for the variables to be protected (for an analogous strategy, see Franconi and Stander, 2000).

Finally, simulation of artificial data sets can be based on a fully specified model; the mixture
model adopted in Grim et al. (2001) and estimated by likelihood methods with the aid of the EM
algorithm provides an example of parametric protection.

For categorical variables, the strategy of releasing synthetic data sets drawn from a nonsaturated
loglinear model “capturing the essential features of the data”, as proposed in Fienberg et al. (1998),
is another example of parametric procedure.

Several proposals in the literature are present which take advantage of a Bayesian formulation:
among the others, Franconi and Stander (2000) develop a Bayesian hierarchical model with spatial
structure, making use of the MCMC output to release predictive intervals instead of single values.

For a review of the Bayesian approach to data disclosure, see Cox (2000).



Part II

A Regression Model Approach for
the Protection of Business

Microdata, with an Application

3 The Microdata

At the beginning of the 1990s the European Commission and Eurostat began a survey of technolog-
ical innovation in European manufacturing and services sector enterprises, called the Community
Innovation Survey. The objective of this survey was the production of comparable data harmonised
at the European level on all technological activities. Economists and the general research commu-
nity have shown such an interest in Community Innovation Survey microdata that the problem of
the release of a microdata for research file has arisen.

The data with which we work come from a representative sample of Italian manufacturing
and services sector enterprises with twenty or more employees. The variables of the Community
Innovation Survey can be divided into two sets. The first contains all the general information
about the enterprise such as its main economic activity (four digit NACE rev. 1 Classification),
geographical area, number of employees (integer ≥ 20), turnover, exports, total expenditure for
research and innovation, and group membership. The first three of these variables are public. The
variables turnover, exports and total expenditure for research and innovation are for 1996 and are
measured in millions of Italian lire. We omit enterprises with zero turnovers or exports because
the release of data about these requires special consideration. Also, when expenditures for research
and innovation are taken into account, we further omit those enterprises performing innovation at
no cost, for the same reasons as above.

We apply disclosure limitation separately to subsets of enterprises that are engaged in the same
economic activity. As an example we will begin by considering enterprises performing the following
two digit NACE rev. 1 main economic activities: 15 (food and beverage), 18 (clothing manufacture),
28 (metal products) and 36 (other products of manufacturing industries including furniture). The
same framework has also been applied to all the possible economic activities (provided the sample
size is large enough), and results are reported in Section 6.

The variable geographical area has eight categories: (1) North West, (2) Lombardy, (3) North
East, (4) Emilia Romagna, (5) Centre, (6) Lazio, (7) Abruzzo and Molise, and (8) Campania,
South, Sicily and Sardinia. These categories are based on the NUTS1 classification, with the three
areas Campania, South, and Sicily and Sardinia being combined into one category since relatively
few enterprises are situated in these areas.

The second set of variables contains confidential information on a range of issues connected with
innovation. For simplicity we shall work with a single innovation variable that indicates whether
or not an enterprise is involved in the innovation of products or processes or both.

4 The Protection Model

In order to make identification a difficult task, we intend to release less precise information for
all variables that in one way or another may lead to identification. These usually include the
publicly available variables geographical area and number of employees. As far as other variables
are concerned, we note that, in general, continuous variables carry more risk for disclosure than
categorical variables. Knowledge of the value of a continuous variable, even though it is not publicly
available, can lead to the identification of an enterprise.

The leading concept of the method is that the more the enterprise is outlying, the higher
the risk of it being identified. The quantitative variables mentioned above can reveal the size of
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an enterprise. The information on the size, when combined with the others, can be extremely
dangerous as it provides clues about the largest and therefore most identifiable enterprises. For
example, information about turnover or exports, or the amount spent for research and innovation
can lead to the identification of a very large and well-known enterprise among all those involved in
a particular main economic activity. Hence these variables will be perturbed.

On the other hand, knowledge of a categorical variable indicating, for example, whether or not
the enterprise is a member of a group, or whether or not the enterprise is involved in innovation,
does not allow for such identification. This is because both small and large enterprises can belong
to a group or carry out innovation.

Protection of the Community Innovation Survey data may therefore be achieved by releas-
ing less precise information about the public variable number of employees, and the continuous
variables turnover, exports and total expenditure for research and innovation. Defining broader
categories for the public variable geographical area may also help to protect the data set. Informa-
tion about whether or not the enterprise is a member of a group, or whether or not the enterprise is
involved in innovation will be released unchanged. Releasing the innovation information unaltered
is particularly appropriate for the Community Innovation Survey. In order to reduce information
loss, we will not categorise the quantitative variables.

In Section 4.1 we present a new model based method for disclosure limitation that releases less
precise information about the continuous variables number of employees, turnover and exports.
Our treatment will follow Franconi and Stander (2002), and hence the variable total expenditure
for research and innovation is not introduced into the protection model here, although it will be
used in Section 6. However this is not a limitation for the model, and later the variable is explicitly
introduced in the same methodological framework. The method builds regression models for the
continuous variables to be protected. Some of the fitted values from these models are then shrunk
before being released. In Section 4.2 we briefly describe a protection method based on principal
components analysis for defining broader categories for the variable geographical area. In order to
provide a comparison with existing methods, in Section 5.3 we shall describe the application of
microaggregation to the variables number of employees, turnover and exports.

Assessing the performance of a disclosure limitation method is a difficult task. We shall consider
this in Sections 5 and 6, with slightly different perspectives. In general terms, there is a balance to
be struck between protection offered and error induced. Hence we shall discuss how to quantify the
amount of protection offered and the error induced by a disclosure limitation method. We finish
Section 5 by presenting results for the four NACE main economic activities under consideration.
These lead us to conclude that the variable geographical area should always be protected. Moreover,
the new method generally offers better protection than microaggregation, whilst inducing less error.

4.1 Formal description of the protection model

The basic idea is as follows: given a set of variables Xl and XK\l, l ∈ K ′ ⊆ K, K ⊆ {1, 2 . . . , p},
Xl being the logarithms of the quantitative variables of Section 3 to be perturbed, Franconi and
Stander propose to regress Xl on XK\l. Hereafter we always include in the design matrix XK\l the
unit vector X0 = 1, in order to allow for an intercept in the regression.

The values to be released are then

X̃l = X̂l + a , (1)

where X̂l is the fitted value and a is an adjustment factor.
For each branch of economic activity the authors consider card(K) = 6 variables, specifically,

X1 = log number of employees, X2 = log turnover, X3 = log exports, X4 = innovation, X5 =
group membership (both dichotomous variables), X7 = geographical area. A log-transformation
for the numeric variables involved in the regressions is adopted, because of the skewed nature of
the original data.
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The model consists of three separate regressions, one for each of the continuous variables number
of employees, turnover and exports requiring protection:

X1,ij =β
(1)
0 + β

(1)
1 X2,ij + β

(1)
2 X3,ij + β

(1)
3 X4,ij + β

(1)
4 X5,ij + α

(1)
i + ε

(1)
ij (2)

X2,ij =β
(2)
0 + β

(2)
1 X1,ij + β

(2)
2 X3,ij + β

(2)
3 X4,ij + β

(2)
4 X5,ij + α

(2)
i + ε

(2)
ij (3)

X3,ij =β
(3)
0 + β

(3)
1 X1,ij + β

(3)
2 X2,ij + β

(3)
3 X4,ij + β

(3)
4 X5,ij + α

(3)
i + ε

(3)
ij (4)

The model is specified for the j−th enterprise in the i−th area, j = 1, . . . , ni, i = 1, . . . , N = 8.
In order to allow for spatial dependence, all of the regressions contain fixed area effects α

(k)
i ; the

latter are constrained to sum to zero:
∑N

i=1 α
(k)
i = 0.

As the formulas in (2)–(4) make evident, the protection procedure consists of performing a
regression model for each Xl to be protected. Not all variables in the regressions are necessarily
protected, and this was the reason for using the notation l ∈ K ′ ⊆ K.

The protection procedure is motivated by the form of prediction intervals. Each of the models
in (2)–(4) has its own predicted values, X̂l,ij = µ̂

(k)
ij , l, k = 1, . . . , 3. A 100(1 − ξ)% prediction

interval for the logarithm of the response variables Xl of model k for the j−th individual in region
i takes the form

(µ̂(k)
ij − s(k) · tξ/2,n−12, µ̂

(k)
ij + s(k) · tξ/2,n−12)

where n is the number of enterprises in the NACE under consideration, µ̂
(k)
ij is the fitted value

from the k−th regression model for the j−th individual in region i , tξ/2,n−12 is such that P(T ≤
tξ/2,n−12) = 1− ξ/2 in which T follows a t-distribution with n− 12 degrees of freedom, and s(k) is
the predictive standard error from the k−th regression that depends upon the covariates measured
on individual j. Following the form of the released values given by (1) , to protect the response
variable Xl in the k−th model, we release X̂l,ij +s(k) ·Fij instead of Xl,ij , where F depends on the
rank rij of Xl,ij . For a fixed value q ∈ (0, 0.5), Fij is taken to decrease linearly from a given value
Fmax to 0 as the rank of Xl,ij increases from 1 to [qn], to be 0 for values of the rank between [qn]+1
and n− [qn], and to decrease linearly from 0 to −Fmax as the rank increases from n− [qn] + 1 to
n, where [qn] signifies the nearest integer less than qn. Throughout q is set to 0.25 and Fmax to
2, although results similar to the ones presented here were obtained using Fmax = 3 and 4. With
this choice of q the released values of the first (last) quartile are inflated (deflated) with respect to
the corresponding fitted values, with the more extreme values receiving the more extreme inflation
or deflation. Later this tail shrinkage is not applied to values that would already be shrunk if the
fitted values were to be released; such a restricted tail shrinkage is used in order to reduce the error
induced.

The method is therefore designed to modify the marginal distributions, redistributing the tail
units in the central body of the distribution. This mechanism clearly changes the marginals, but
its additional aim is to allow the users to build regression models and to draw almost the same
inferential conclusions as they would from the real data. Information about the original marginal
distributions and tables can be recovered from the tables published by the NSIs in aggregate form,
or can otherwise be supplied to the user.

4.2 Protecting the variable geographical area

In Franconi and Stander (2002) it is proposed to release the values of the variable geographical
area using two broader categories. We proceed by performing a principal components analysis
on standardized versions of the variables number of employees, turnover and exports. We then
calculate the value of the first principal component for each enterprise. We take the average of
these values over enterprises in each of the N = 8 geographical areas to obtain an overall effect
Ai for each area i = 1, . . . , N . Let Ā = 1

N

∑N
i=1 Ai and Ãi = Ai − Ā. Our two broader categories

are defined using the Ãi values, with areas with positive Ãi being placed in one category, and the
remaining areas being in another.

The extension of this approach to more than three variables and to more than two broader cate-
gories is straightforward. Moreover, it would also be possible to multiply the standardized variables
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before performing the principal components analysis by an appropriate weight if all variables were
not considered to be equally important. The results that we shall present in Section 5 changed very
little indeed when we used the log-transformed variables instead of the original ones.

5 Assessing the performance of a disclosure limitation method

There are two aspects to assessing the performance of a disclosure limitation method. The first
involves quantifying the level of protection achieved for the file by the method and will be discussed
in Section 5.1, while the second concerns estimating the error induced and will be discussed in
Section 5.2. The results obtained when both the new method and microaggregation are applied to
microdata from the Community Innovation Survey are presented in Section 5.4.

As already noted, any disclosure limitation method involves a balance between protection offered
and error induced. An explicit use of this balance in evaluating methods is discussed in Duncan and
Mukherjee (2000) in the area of statistical disclosure limitation of databases. The framework for
assessing the amount of protection offered is usually formalised by means of linkage techniques; see,
for example, Duncan and Lambert (1989). These techniques are especially appropriate when the
variables being protected are continuous, as in our case. In such a framework the level of protection
is then measured by the number of linked enterprises, that is by the number of enterprises that are
recognisable.

Several methods have being proposed to measure the effect of perturbation method on the
quality of released data; see Duncan and Mukherjee (2000) and references therein. The measure
that we propose is based on the reliability of inferences obtained from the released data. We believe
that our measure is able to give an indication of the utility of the released data for further studies.

5.1 Quantifying the amount of protection offered

Our approach to quantifying the amount of protection offered by a disclosure limitation method
is to check whether it would be possible to recognise a unit in the released data if we were to
have all the information available from the original data. In this sense our measure of protection
is somewhat conservative in that the intruder is assumed to have all available information for
compromising confidentiality. To calculate our measure we begin by stratifying the whole data
set by the variables X4(innovation) and X5 (group membership), these variables being released
unchanged, and by the released geographical area. We next define the distance d between enterprise
j̃ in the released data and enterprise j in the original data as follows:

d(j̃, j) =δ(employees j̃, employees j) + δ(turnover j̃, turnover j) + δ(exports j̃, exports j),

where, for example,

δ(employees j̃, employees j) = | rank(employees j̃)− rank(employees j)|

in which rank(employees j̃) (rank(employees j)) is the rank of the value of the number of employees
for enterprise j̃ (enterprise j) in the released (original) data among all values of number of employees
in the stratum.

We say that enterprise j̃ in the released data is matched if

j̃ = arg min
j∈stratum

d(j̃, j).

The total number of matches then provides us with a measure of protection.

5.2 Estimating the error induced

Estimating the error induced by a disclosure limitation method is a difficult problem, and here we
offer only a partial solution. We use the percentage errors in estimating regression parameters as
a measure of the quality of the protected data. In particular we consider the results that would be
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obtained from a simple regression that users are likely to perform when investigating how turnover
depends on the number of employees:

X2,ij = β0 + β1X1,ij + αi + εij (5)

where αi is an area effect as before and εij ∼ N(0, τ2) independently, with τ unknown. We can
fit this model using the original data, the data protected by the new method with restricted and
unrestricted shrinkage, and the data protected by microaggregation. We define the percentage error
involved in estimating β0, say, when the data are protected using the new method as

100

(
β̂new

0 − β̂original
0

|β̂original
0 |

)
%.

5.3 Microaggregation

As just mentioned, we will compare the method that we are proposing with the existing microag-
gregation approach.

The basic idea of microaggregation (Defays and Anwar, 1998) is to combine units into small
homogeneous groups. The original data values of each variable being protected are then replaced
by the corresponding group mean. For a recent discussion of microaggregation, see Domingo-Ferrer
and Mateo-Sanz (2002).

To apply microaggregation to the three continuous variables number of employees, turnover and
exports we first stratified the enterprises by the eight geographical areas. Within each stratum, a
principal components analysis was performed on standardised versions of these three variables. The
enterprises were then ordered according to the values of the first principal component. This is why
this form of microaggregation is often referred to as single axis microaggregation. Aggregation takes
place by replacing the individual values of these variables by the average over groups of ordered
enterprises of size g. If the number of enterprises in a stratum is not a multiple of g, then the
last step of this procedure will consider a group of size less than g. This group is combined with
the preceding one, the averages of the three variables being taken over this extended group. With
g = 1 the variables are given no protection. As g increases, the amount of perturbation seems to
increase, although the differences are not large. We therefore choose to work with g = 3 from now
on.

We applied microaggregation separately to enterprises in each of the four NACE main economic
activities under consideration. For main economic activity 18 (clothing manufacture) the results of
the above procedure for the variable turnover are shown in the right panel of Figure 1. We see that
some protected values are lower (higher) than the true values of turnover beyond the left (right)
vertical lines. This makes identification of these enterprises easier, which is not the case for the
new method. As the value of g is constant, the form of microaggregation that we have considered
is sometimes known as fixed group microaggregation. Other forms of microaggregation such as
hierarchical clustering microaggregation are discussed in Domingo-Ferrer and Mateo-Sanz (2002),
for example. We do not consider these more complicated forms of microaggregation further as
they offer less protection than fixed group microaggregation. However, in Section 5 we will briefly
mention a very simple type of microaggregation known as individual ranking microaggregation.
For this each variable is ranked and aggregated separately. We will see that individual ranking
microaggregation performs badly.

5.4 Results

Table 1 presents the number of matches obtained when the data are protected using six different
protection methods. These are the new method with restricted shrinkage, the new method with
unrestricted shrinkage, and microaggregation, all three being considered without and with the
protection of geographical areas.

It is clear that the protection of geographical area leads to considerably fewer matches. More-
over, when geographical area is not protected, the number of matches can be very high. We therefore
recommend always protecting the variable geographical area.
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Fig. 1. Original and protected values of the variable turnover based on data from NACE main economic
activity 18 (clothing manufacture). The left panel shows the result obtained from the new method. Any
value lying on the diagonal line would be released without change. A logarithmic scale is used on all axes.
The right panel was obtained by applying microaggregation with groups of size g to the same data.

The new method with unrestricted shrinkage leads to far fewer matches than the new method
with restricted shrinkage. However, we will shortly see that the price of this is a considerable
increase in induced error.

We also implemented individual ranking microaggregation as mentioned in Section 5.3. We
found that the level of perturbation imposed by this method was not sufficient to protect the data
even when the variable geographical area was protected. In fact, the percentage of matches achieved
were 92%, 74%, 91% and 90% for NACEs 15, 18, 28 and 36 respectively. The group size g had to
be increased very considerably to reduce these percentages to any great extent.

Table 2 presents the percentage errors involved in estimating the parameters of Model (5) when
the data are protected using the new method with unrestricted shrinkage, the new method with
restricted shrinkage and microaggregation. All three methods include the protection of geographical
areas. Rather similar results were obtained when geographical area was not protected.

Both the new method with restricted shrinkage and microaggregation give an estimate of τ
that is less than that obtained using the original data for all four NACE. This means that these
methods have led to a reduced estimate of residual variation. The new method with restricted
shrinkage estimates τ better than microaggregation.

When the data are protected using the new method with unrestricted shrinkage the estimate
of τ is greater than that obtained using the original data for NACEs 15, 28 and 36; for these
NACE the estimate of residual variation has been increased. This suggests that the amount of
inflation or deflation produced by the method has lead to a larger dispersion in the protected than
in the original data. For NACEs 15, 28 and 36 using the new method with restricted shrinkage
induces less error than microaggregation when estimating the parameters β0 and β1. For these
two parameters the new method with unrestricted shrinkage induces a much higher error than the
other two protection techniques. We reached broadly similar conclusions when considering other
regressions: that both the new method with restricted shrinkage and microaggregation led to a
reduced estimate of residual variation; that very often - but by no means always - the new method
with restricted shrinkage induces less error than microaggregation; that the new method without
restricted shrinkage induces much more error than the other two protection techniques. The results
presented in Table 1 and Table 2 make concrete the trade off between protection offered and error
induced by a disclosure limitation method.

6 Further Experiments on the CIS survey

The methodology described in Section 4.1 was applied to the whole Italian sample from the CIS
survey. A separate set of regressions plus restricted shrinkage has been fitted for each economic
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Table 1. The number of matches obtained using six different protection methods: the new method with
restricted shrinkage, the new method with unrestricted shrinkage, and microaggregation, all three being
considered without and with the protection of geographical areas. For each NACE main economic activity
the percentage of the total number of enterprises is given in brackets.

Method NACE 15 NACE 18 NACE 28 NACE 36
n = 236 n = 158 n = 369 n = 294

New method
Restricted shrinkage
Areas not protected

84 (36%) 63 (40%) 103 (28%) 104 (35%)

New method
Restricted shrinkage
Areas protected

46 (19%) 37 (23%) 40 (11%) 49 (17%)

New method
Unrestricted shrinkage
Areas not protected

41 (17%) 25 (16%) 41 (11%) 35 (12%)

New method
Unrestricted shrinkage
Areas protected

12 ( 5%) 12 ( 8%) 13 ( 4%) 16 ( 5%)

Microaggregation
Areas not protected

125 (53%) 89 (56%) 156 (42%) 125 (43%)

Microaggregation
Areas protected

80 (34%) 49 (31%) 70 (19%) 74 (25%)

Table 2. Percentage errors involved in estimating the model parameters τ , β0 and β1 when the data are
protected using the new method with restricted shrinkage, the new method with unrestricted shrinkage,
and microaggregation. All three methods include the protection of geographical areas.

New method
Restricted shrinkage
Areas protected

New method
Unrestricted shrinkage
Areas protected

Microaggregation
Areas protected

τ

NACE 15 −17.2 13.6 −41.2
NACE 18 −35.8 −2.8 −46.2
NACE 28 −20.5 13.4 −36.1
NACE 36 −25.5 4.1 −40.8

β0

NACE 15 −4.0 25.8 −6.6
NACE 18 −22.5 42.7 −8.3
NACE 28 −6.2 18.1 −8.4
NACE 36 −1.5 38.2 −9.2

β1

NACE 15 5.7 −35.0 9.1
NACE 18 21.1 −36.5 11.4
NACE 28 5.3 −21.3 8.2
NACE 36 3.2 −35.4 12.3
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activity as defined by the two digit NACE classification. In this application the variable total
expenditure for research and innovation has been added to each model; in order to protect this
variable, an additional regression model has been introduced. Setting K = 7, K ′ = {1, 2, 3, 6}
and denoting by X6 the logarithm of total expenditure for research and innovation, the protection
model consists of the following four normal regression models:

X1,ij =β
(1)
0 + β

(1)
1 X2,ij + β

(1)
2 X3,ij + β

(1)
3 X4,ij + β

(1)
4 X5,ij + β

(1)
5 X6,ij + α

(1)
i + ε

(1)
ij (6)

X2,ij =β
(2)
0 + β

(2)
1 X1,ij + β

(2)
2 X3,ij + β

(2)
3 X4,ij + β

(2)
4 X5,ij + β

(2)
5 X6,ij + α

(2)
i + ε

(2)
ij (7)

X3,ij =β
(3)
0 + β

(3)
1 X1,ij + β

(3)
2 X2,ij + β

(3)
3 X4,ij + β

(3)
4 X5,ij + β

(3)
5 X6,ij + α

(3)
i + ε

(3)
ij (8)

X6,ij =β
(4)
0 + β

(4)
1 X1,ij + β

(4)
2 X2,ij + β

(4)
3 X3,ij + β

(4)
4 X4,ij + β

(4)
5 X5,ij + α

(4)
i + ε

(4)
ij (9)

Analogously to what was previously stated in Section 4.1, for l ∈ K ′ = {1, 2, 3, 5} the released
values of each variable Xl take the form

X̃l,ij = µ̂
(k)
ij + s(k)Fij

with the same pattern for the Fijs as before. For geographical area, we follow the approach of
Section 4.2, though computing the principal components of the four variables to be protected,
including the total expenditure for research and innovation.

6.1 Comments on the Protection Method

In this section we discuss the strengths and weaknesses of the protection method discussed in
Section 4 in light of the application of this technique to the Italian section of the CIS survey.

In particular, we analyze the following issues: flexibility of the procedure; protection achieved;
validity of the data in terms of estimating means, covariances, and regressions.
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Fig. 2. Effect of the protection method on outlying enterprises. The data have been projected onto their
first two principal components. Many outliers have disappeared, although some still remain

– Flexibility
First of all, the main feature of the protection model above is flexibility. For example, if we
assume that the risk of disclosure is proportional to the distance to the mean of the data,
units may be protected according to their risk. Moreover, in formula (1), which specifies the
protection model, adjustment terms a can also be constructed such that particular units receive
a higher level of protection.
Another positive characteristic of the method is its wide applicability, the core of the method
being a set of regression models. Further, such a protection is easily implementable in a fully
automated fashion.
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– Protection
By construction, the model is designed to shrink the units towards the mean: in fact, use of the
fitted values from the regression models and subsequent modification of the tails both serve to
shrink the values towards the mean. This mechanism will in general modify the values of the
outlying units.
Figure 2 illustrates the application of principal components analysis to the original and released
data. It can be seen that units that are clearly visible in the first graph are effectively moved
towards the centre of the data. However, the possibility that some units that fall outside the
main body of the released data stay as outliers still remains. In effect, protecting some units may
expose others to the risk of disclosure. In cases like this, the best strategy would probably be
to re-run the model, using a higher value for q, or otherwise re-run the model on the previously
protected data.

– Data Validity: Means
Linear regression has the property that means are left unchanged. Moreover, the use of sym-
metric adjustments a maintains this feature. Note though that when restricted shrinkage is
adopted, the symmetry just mentioned may disappear, and the mean values might change.
However this effect should in general not be dramatic. The computations carried on the real
data show a good agreement between the means of the real data and the protected data. Ta-
ble 3 shows the results for two selected economic activities, NACE rev.1 categories 18 (clothing
manufacture) and 24 (chemical products), and for the whole sample of all economic activities.

Table 3. Effect of protection method on the means - selected economic activities

NACE 18 NACE 24 all
variable original protected original protected original protected

turnover 10.78 10.75 11.28 11.26 10.08 10.03
exports 8.06 7.99 9.63 9.59 8.38 8.30
# employees 4.57 4.56 5.22 5.22 4.48 4.47
R & I 3.79 3.85 5.60 5.67 3.87 4.94

– Data Validity: Variance and Correlation
In general, one side effect of the regression model plus tail shrinkage protection strategy is a
certain amount of reduction in the variability. This effect is clearly visible in Figure 3.
From the point of view of an analyst wanting to use the released data to build and estimate
regression models, this effect turns into a reduction of the residual variance and therefore results
in an apparently increased precision of the estimates. A similar effect is seen for the correlation
matrix. Table 4 show some results for food enterprises (NACE 15) and for the whole sample. In
general, the regression acts to strengthen the linear relationships between variables, the only
exception being with expenditure for research and innovation (R & I); this is probably due to
the presence of structural zeroes for those enterprises which, being not engaged in innovation,
do not present any expenditure for R & I.

– Data Validity: Regression
As in Franconi and Stander (2002), a simple test model for the variable turnover (here denoted
by X2) has been applied to the protected data, divided according to the NACE classification.
The design matrix XK\2 contains as explanatory variables the number of employees and geo-
graphical area. For reasons of comparability, the geographical aggregation produced by using
principal components analysis has been used in both models. For enterprises performing the
same two digit NACE rev.1 main economic activity, the test model takes the following form:

X2 = XK\2β + ε ε ∼ N(0, σ2
ε I)

for the real data, and
X̃2 = X̃K\2β̃ + η η ∼ N(0, σ2

ηI)
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Fig. 3. Effect of the protection method on variability and bivariate relationships

Table 4. Correlation matrices. Correlations for the original data are above the diagonal, correlations for
the protected data are below the diagonal.

NACE 15

turnover - 0.64 0.88 0.45
# employees 0.85 - 0.57 0.30
exports 0.90 0.88 - 0.48
R & I 0.31 0.23 0.34 -

all NACEs

turnover - 0.73 0.90 0.46
# employees 0.81 - 0.67 0.37
exports 0.91 0.84 - 0.46
R & I 0.23 0.19 0.23 -
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for the protected data.
The above mentioned drop in variability is again present, as can be seen from Table 5. The table
shows estimates of the variance for the following economic activities: 15 (food and beverage),
18 (clothing manufacture), 24 (chemical products) and 28 (metal products).

Table 5. Variance estimates for selected economic activities

NACE cσ2
ε

cσ2
η

15 0.67 0.52
18 0.90 0.61
24 0.53 0.42
28 0.49 0.38

An alternative approach that follows the above framework would replace the fitted values by the
fitted values plus a random term drawn from the estimated error distribution might provide a
solution to the problem of reduced residual variability. Note however that, due to the explained
variation, the variability of X̂l as predicted by a regression model is generally smaller than the
variability of Xl. We therefore suggest that a variance inflation factor for the estimators should
be released together with the data.
The reduction in variance will of course be present only for the imputed variables. The survey
specific variables will be released unchanged.
Having modified the data, one cannot expect the parameter estimates for test regressions based
on the released data to be the same as the estimates based on the original data. However, we
hope that, on average, the fitted values based on the protected data will be the same as those
based on the original data.

7 Concluding Remarks and Further Research

In the previous sections we have discussed a model based framework for disclosure protection
methods and presented the results of an extensive study concerning the application of a protection
technique based on regression models (Franconi and Stander, 2002). We highlight positive features,
limitations, and issues to be further investigated.

Throughout the discussion we saw that the protection method acts in the sense of strengthening
the relationships predicted by the regression models used. Consequently, we must be careful to
include in the regression the important predictors, and especially any nonlinear relationship, as
the imputation strategy tends to throw away any structure not included in the one imposed by
the model itself. A good fit is of course a basic requirement that the protection model should meet
in order to be sensible and effective; a model exhibiting a poor fit might in fact preserve only a
negligible portion of the information carried by the data.

We may use a form of the perturbation function F that differs from the piecewise linear one
that we have used. Moreover, in its present form, F depends on the units only through their ranks;
using a function of the residuals might link the shrinkage to the (local) fit of the model. This link
should be based on optimization algorithms whose formalization is a difficult task.

The normal regression model is sensitive to the presence of outliers. When analyzing data like
the business microdata, which are characterized, by their nature, by the presence of outliers, use of
robust models such as least absolute deviation regression or trimmed regression would be advisable.
Indeed, these methods depend less heavily on outlying points, and more importantly, on influential
observations.

Evaluation of a variance inflation factor for the estimators is another point deserving further
investigation. The major difficulty is the need to devise a factor taking into account also the effect
of the shrinkage component.

Provided that the limitations encountered in the application are overcome, we are confident
that the method will provide a valuable solution to the problem of the dissemination of business
microdata.



Part III

Information Preserving Statistical
Obfuscation

8 Introduction

The model-based work by Franconi and Stander (2002) had the disadvantage that the perturba-
tions suggested for achieving protection result in an unintended corruption of the model-related
information contained in the data. While the release of perturbed data inevitably corrupts certain
information, Dr Burridge suggested that the information related to the assumed model for the data
- such as a simple regression model for instance - could be explicitly preserved by using ideas of
sufficiency and conditional sampling from mathematical statistics. The resulting method of per-
turbing data has been termed Information Preserving Statistical Obfuscation (IPSO). A special
case of the method produces new data with the same mean and covariance structure as the original
data set. The idea has been applied to the following situations:

– multivariate continuous data
– mixed continuous and discrete data
– discrete categorical data

Progress on these topics is described in the next few sections. The next paragraph describes the
basic idea.

Dr Burridge’s work considers the situation where a survey consists of information gathered on
continuous variables for a set of companies or individuals (the “respondents”). The information is
assumed to consist of two parts for each respondent:

– public data y = (y1, . . . , yp)
– specific survey data x = (x1, . . . , xs).

It is assumed that the intention is to release, for a subset of respondents, perturbed data (y′, x) in
place of the true data (y, x). Thus the method assumes that the intention is to release the specific
survey data unchanged, but the public data will be changed in some way. The aim of this proce-
dure is to preserve as many features of the data as possible while maintaining the identity of the
respondents. For example, it might be decided to disclose only the means across all respondents of
the public data y. In practice it is only possible to reach a compromise between the two objectives.
The compromise investigated in Dr Burridge’s work is based on considering a model for the con-
ditional distribution of y|x, for example a multivariate regression model for the y variables with
explanatory variables represented by the x variables. The “information” contained in the data y
is summarized by a sufficient statistic T . The proposal is to produce a sample value, y′ say, from
the conditional distribution of Y |(T, x) and to disclose (y′, x). This procedure will reproduce the
sufficient statistic T if information on all respondents is requested. Hence, information has been
preserved while achieving some protection. The level of protection achieved will be data dependent.
The particular cases investigated are described in the next few paragraphs.

9 Multivariate Continuous Data

In this section of the work it has been assumed that the, possibly transformed, public data are well
approximated by a multivariate normal distribution after conditioning on the survey data. The
IPSO method developed by Dr Burridge produces a new set of data with exactly the same sample
properties (means, covariances, slopes, etc) as the original data. In its simplest form (“random
IPSO”) the method will produce a new random set of data with these properties. In this case the
method produces perturbed data very easily. It is also possible to search, in a systematic manner,
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for a new sample having additional properties such as a maximum level of protection (“purposive
IPSO”). Computer code has already been developed within S-PLUS and FORTRAN for doing
random IPSO, but still needs to be developed for purposive IPSO. Full details of this work are
planned to be reported as a contribution by Dr Burridge to a special issue of the statistics journal
Statistics and Computing.

10 Mixed Continuous and Discrete Data

This part of the work assumes that the public data consist of discrete counts and that the survey
data are either discrete or continuous. The method developed so far assumes that the public data
variables are observations from independent Poisson log-linear models. A FORTRAN computer
program has been written which produces new samples consistent with the log-linear model esti-
mated from the true data. A potential difficulty with the method is that the production of new
samples can be computationally intensive. During the development of this program it was realized
that the procedure of producing a new sample was formally similar to certain procedures devel-
oped for Monte Carlo “exact” tests of models for contingency tables, a survey of which is given by
Agresti (1992). The connection between sampling of contingency tables and the needs of statistical
disclosure has also been discussed by Fienberg et al. (1998). Dr Burridge’s work on this is described
briefly next.

11 Discrete Categorical Data

The most recent part of Dr Burridge’s work has focussed on applying the IPSO method to cat-
egorical data which are commonly presented in the form of contingency tables. Such data are
usually analyzed using Poisson or multinomial log-linear models involving factors. The difficulty of
producing new random samples from certain log-linear models, as required by the IPSO method,
has long been recognized and recent work (e.g. Forster, McDonald and Smith, 1996; Diaconis and
Sturmfels, 1998) has concentrated on the development of Markov chain Monte Carlo methods for
performing the sampling. However, when the model has the special structure of a decomposable
graphical model (Lauritzen, 1996; Whittaker, 1990) more straightforward algorithms are possible
(Kreiner, 1987). Dr Burridge, jointly with Dr Colin Christopher of the Department of Mathematics
and Statistics, has developed a new algorithm for using a decomposable graphical model to produce
data with given marginal totals from multi-way contingency tables. The algorithm is very fast and
has been implemented in a FORTRAN program. The algorithm is presently being extended to
make the user interface more transparent. Comparisons with the algorithms developed by Svend
Kreiner have yet to be performed. A written report is currently being prepared.



Part IV

Microdata protection via
simulation

12 Use of simulation techniques for disclosure protection

Traditionally, every protection technique tries to balance between protection achieved and data
quality. Most protection strategies are based on perturbation, and by construction perturbation
enhances protection while lowering data quality; the trade-off between disclosure protection and
information loss in this case is evident. These procedures generally perturb the data to an extent
that preserves confidentiality of the respondents, whereas the information loss should be addressed
after the data has been transformed. Under this respect, we believe that simulation can provide
an attractive alternative for data protection. Indeed, whereas artificial units are not protected by
law, so that confidentiality is guaranteed, proper choice of the model to simulate from allows us
to preserve data quality. Therefore in this case the protection model can be primarily tailored to
data quality. The proximity of artificial units to the original data can be given additional checks,
although although the concept of establishing a link between simulated and original data is not
fully meaningful, as the simulated sample size may not coincide with the observed sample size. This
issue will not be discussed here. Some approaches to establishing a link between real and simulated
data are discussed in Dandekar, Domingo-Ferrer and Sebé (2002a).

As far as disclosure protection is concerned, our view is that in general the model which is to
be used for simulation will not allow identification of individual traits. This may not be true for
categorical data; however in this paper we deal with business microdata, which consist mainly of
continuous variables. Concerning information loss, the point is that from a statistician’s perspective,
what really is of interest are aggregate parameters, not individual characteristics, so that release of
a model that preserves these parameters will suffice for the analyst needs.

We stressed before that simulation allows to work primarily on data quality, as protection is
in some sense guaranteed; this justifies our approach to disclosure limitation. As already stated,
further checks for protection can be conducted before releasing the data.

13 The Maximum Entropy Approach

As highlighted in the literature (Winkler, 1998), among the desirable properties a protection pro-
cedure should exhibit, one is the agreement with some prescribed characteristics of the distribution
generating the original data, e.g. the means, the covariance structure, and so on. Such an issue is
clearly connected with the analytic validity of the file. Once agreed on use of simulation, restric-
tion of the model to the class of distributions preserving these characteristics seems therefore a
sensible approach to disclosure avoidance. The latter aspect is connected with the fit of the model
to be used for simulation. In fact, imposing characteristics to the target distribution amounts to
imposing a structure to the model in order to get as close an approximation as possible to the true
distribution.

If we were to know the true underlying distribution, the ideal procedure would restrict attention
to the class of models having a set of characteristics (the first M moments, say) equal to those of
the original distribution. As we can only infer those parameters, the best we can do is estimate
them and set G as the class of distributions having the prescribed characteristics equal to their
empirical counterparts.

Once the class of distributions with prescribed moments or characteristics has been selected,
still the problem of picking one model out of the family has to be solved. In the class G we propose
to choose the maximum entropy distribution, that is known from the literature (e.g. Ihara, 1993)
to exist and be unique under general conditions.



20

Besides providing a way to select one model in a class of distributions, the maximum entropy
approach is here adopted for its information-theoretic implications. The entropy measures “unifor-
mity” or spreadness of a distribution, which provides a measure of minus information, therefore
the maximum entropy distribution in the class G is the element of G which exhibits the maximum
homogeneity (e.g. uniformity) compatible with the given constraints. Resorting to the maximum
entropy distribution hence in a sense tantamounts to adding no extra information other than the
characteristics fixed in advance. For this reason the maximum entropy distribution in the class G
can be described as a non-informative distribution.

Here the set of characteristics (not necessarily coinciding with the moments) represents the
information to be used for the purpose of approximating the original distribution. If we can build
a model that is sufficiently close to the original distribution, we can simulate synthetic units from
it, something parallel to the parametric bootstrap. In fact, the procedure can be described as a
semiparametric bootstrap. Choice of the maximum entropy distribution is further justified by the
need to be as uninformative as possible about the distributional properties not accounted for. The
number and type of constraints clearly affect the fit of the resulting MaxEnt distribution; the
more (independent) constraints are added, the more closed to the original will be the MaxEnt
distribution.

Under this approach, constraints are imposed on the expected values of features. We denote
the features by φ1(·), . . . , φM (·). These are instrumental functions of the random variable that
generates the data. The expected values of features have been previously termed characteristics.
Once the relevant characteristics and hence the corresponding features are chosen, constraints are
imposed on the characteristics. In practice, empirical constraints are used, so that the expected
values of the features are constrained by their empirical averages.

Under general conditions, for given constraints on such characteristics, the parametric form of
the density of the maximum entropy distribution is given by:

f(x; λ) =
exp {−∑M

j=1 λjφ
j(x)}

Z(λ)
(10)

where Z(λ) is the normalising constant and the parameters λ1, . . . , λM have to be determined
so that the imposed constraints are satisfied. Since the parametric form of such model is known
to belong always to an exponential family with number of parameters depending on the imposed
constraints, a synthetic sample can easily be drawn for example using MCMC techniques. In this
case, use of the Metropolis-Hastings is suggested to avoid numerical computation of the normalising
constant.



Part V

14 Feasibility of automated procedures

All the procedures discussed so far have been put into practice by using prototype codes. Most
of these methods are still under study and need to be thoroughly tested by application to real
data. Such testing will be performed in Workpackage 5 and will be dicussed in Deliverable 5-D5,
due at the end of the project. At the moment actual implementation of such protection strategies
into µ-Argus can therefore be considered for the regression-based model of Franconi and Stander
(2002) only. Generally speaking, we believe that all these models should be considered for use by
experts only, mainly because the set up and details of the protection model may change across
different data. In particular, as far as the implementation into µ−Argus of the procedure discussed
in part II is concerned, we recall that the protection method proposed is the result of data analysis
and re-analysis, an involved process that cannot be fully automated. The applications show that
use of a model exhibiting a poor fit to generate perturbed or synthetic data can have a dramatic
effect on the quality of the released data themselves. Choice of the variables to be included in the
model is another point that cannot be automated, it is heavily dependent on the objects of the
survey and moreover cannot be determined in advance.

Another issue is the size of the sample in the subdomains where separate models have to be
fitted. Sometimes the subdomains are too small to allow meaningful analysis. In that case no
solution other than working on subsamples resulting from the aggregation of similar domains is
envisaged.
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