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1 Introduction 

At first sight, one might find it difficult to understand that information presented in tabular form 
presents a disclosure risk at all. After all, one might say that the information is presented in 
aggregate form. However, in many cases, cells of tables indeed relate to single or very few 
respondents only, and this implies a disclosure risk for the individual data of those respondents. If 
it has been established that a disclosure risk would be connected to the data set, users of 
τ-ARGUS can apply cell suppression in order to protect those data. Cell suppression comprises 
two steps: In the first step the disclosure risk connected to each individual cell of the tables is 
assessed. Concepts used in τ-ARGUS for assessment of disclosure risk for tabular data will be 
explained in section 2. Cells are suppressed when they reveal too much information on individual 
respondent data. In the second step, in order to prevent these so called “primary suppressions”, or 
“sensitive” cells, from exact disclosure or from being closely estimable from the additive 
relationship between the cells of the table, additional cells (so called “secondary” or 
“complementary” suppressions) must be suppressed. This second step is called “secondary cell 
suppression”. Section 3 considers aspects of secondary cell suppression in theory and practice, 
discussing issues of information loss, as well as table design aspects. Section 4 provides a brief 
overview on alternative algorithms for secondary cell suppression in τ-ARGUS.  

 

2 Disclosure Risk 

In this section the concepts for assessment and control of disclosure risk for magnitude tables of 
τ-ARGUS will be explained. Section 2.1 is concerned with the kind of disclosure that may 
happen when disclosure control on the cell level is lacking. 

From the linear relations between published and suppressed cell values, data users could derive 
bounds for the suppressed cell entries, and thus estimates of respondent data for respondents 
contributing to confidential cells. This kind of disclosure risk will be referred to as ‘table level 
disclosure risk’ and is discussed in section 2.2 . 

2.1 Sensitive Cells in Magnitude Tables 

τ-ARGUS offers several safety rules (also referred to as ‘sensitivity measures’, or ‘sensitivity 
rules’) as measures to assess the disclosure risk connected with release of a certain aggregate (or 
cell) within a table. Choice of a particular safety rule is usually based on certain intruder scenarios 

mailto:sarah.giessing@statistik-bund.de


(which involve assumptions about additional knowledge available in public or to particular users 
of the data) and on some (intuitive) notion on the sensitivity of the variable involved. 

• Intruder scenarios: With business data, it is usually assumed, that the “intruders”, those who 
might be interested in disclosing individual respondent data may be “other players in the 
field”, e.g. competitors of the respondent or other parties who are generally well informed on 
the situation in the part of the economy, to which the particular cell relates. It is assumed 
specifically, that the intruders are able to identify the largest contributors to a cell. The 
commonly applied sensitivity rules differ in the particular kind and precision of additional 
knowledge assumed to be around. 

• Notion on the sensitivity of the variable: Some safety rules protect against exact disclosure of 
individual data only, while others, used only with magnitude data, go further, and protect the 
data from approximate disclosure. 

An aggregate (or: cell in a table) that is indeed ‘unsafe’, or ‘sensitive’ according to the safety rule 
employed, is subject to what is called ‘primary suppression’. 

Sensitivity Rules to prevent exact disclosure When it is enough to prevent exact disclosure of 
respondent data, users of τ−ARGUS specify the parameter N of a minimum frequency rule. A cell 
with at least as many respondents as this minimum frequency is considered safe. Normally this 
parameter will be set to 3, except when it is realistic to assume that groups of N-1 ( N > 2) 
respondents contributing to the same cell pool their data to disclose the contribution of another 
respondent. 

When it is not enough to prevent exact disclosure, but the risk of approximate disclosure must 
also be limited, a sensitivity rule to prevent approximate disclosure must be specified. 

Sensitivity Rules to prevent approximate disclosure When a particular variable is deemed strongly 
confidential, preventing only exact disclosure may be judged inadequate. We may also wish to 
prevent an intruder from deducing too precise an estimate. This is a risk whenever an aggregate is 
predominated by very few contributions. τ-ARGUS offers two types of concentration rules to 
prevent this kind of disclosure: the ‘N respondent, k percent’-dominance rule, where N refers to a 
number of respondents, and k is a percentage threshold for the total of the N largest contributions 
in relation to the cell total, and the so called (p,q)-rule. The following section clarifies the concept 
of safety rules using simple examples for illustration. In a more general way, the sensitivity rules 
given below can be represented as “upper linear sensitivity measures”. For definition and 
mathematical properties of linear sensitivity measures in general see [2].  

 

The simplest concentration rule is the (1,k)-rule: 

(1,k)-rule 

According to the (1,k)-rule, an aggregate is identified to be unsafe, whenever the largest 

contribution  is greater than k percent of the total aggregate value X , e.g. when1x Xkx
1001 >  . 

This will make sure, that in any non-sensitive aggregate the largest contribution  will be k% of 
the aggregate (e.g. table cell) value X at most: 
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Example 1: 

Application of the (1,90)-rule. 

Let the total value of a table cell be  X  = 100,000 . 

Let the largest contribution be  =  90,000 . 1x

90,000  ≤ (90/100)*100,000, so according to the (1,90)-rule the cell is safe – no risk of 
disclosure. 

The upper estimate for the largest contribution = 100,000 , will overestimate  by 11.1 % 

of :   
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Often however, the second largest contributor is able to derive a much more precise upper 
estimate of the largest contribution, by subtracting his own contribution  from the aggregate 
total X ( ). An example is given below. 

2x

21ˆ xXx −=

Example 2: 

Application of the (1,90)-rule. 

Let the total value of a table cell be  X  = 100,000 . 

Let the largest contribution be  =   50,000 . 1x

Let the second largest contribution be =  49,000 . 2x

50,000 < (90/100)* 100,000 , so according to the (1,90)-rule the cell is safe – there seems to 
be no risk of disclosure. But   = 100,000  − 49,000  = 51,000 , 1̂x

hence  2
000,50

000,50000,51100
ˆ

100
1

11 =−⋅=−⋅
x

xx . 

So here, the second largest contributor is able to derive an upper estimate for the largest 
contribution which overestimates the true value by 2 % only –  quite a good estimate! 

The example shows, that, as with the minimum number of respondents’ rules in case of a 
minimum frequency with N=2, there is indeed a risk of (approximate) disclosure, because either 
of the two largest contributors would be able to derive a close upper estimate for the contribution 
of the other one by subtracting his or her own contribution from the aggregate total. One option to 
prevent this kind of disclosure risk is to use a (2,k)-dominance rule instead of the (1,k)-dominance 
rule. The (2,k)-dominance rule is based on the percentage of the two largest contributions in the 
cell instead of only the largest contribution, e.g. cells are considered unsafe when 

 Xkxx
10021 >+   (1) 

As the (2,k)-dominance rule has a certain tendency for over-suppression – as will be explained 
below - we rather suggest the use of (minimum protection of) p %-rules, or, briefly, p %-rules, 
also offered by τ-ARGUS. 



 

p%-rules 

According to the p%-rule, an aggregate is sensitive, when the second largest respondent could 
estimate the largest contribution  to within p percent of  , e.g. when 1x 1x

 ( ) p
x

xxX <⋅−− 100
1

12   (2) 

This rule can be illustrated as follows: Assuming, that there are no coalitions of respondents, i.e. 
there are no intruders knowing more than one of the contributions, then the best upper estimate of 
any other contribution can be obtained by the second largest contributor, when he subtracts his 
own contribution from the aggregate total (e.g. cell value) X to estimate the largest 
contribution ( ). Application of the p%-rule yields that this upper estimate will 
overestimate the true value by at least p % for any non-sensitive cell. 

2x
X − 21ˆ xx =

 
Comparison of p%-rule to (2,k)-rule 

When both sides of relation (1) used for definition of the (2,k)-rule above are subtracted from X 
and then divided by X the result will be 
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100

110012 k
X
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In this formulation, the (2,k)-rule looks very similar to the formulation of the p%-rule given by 
(2). Both rules define an aggregate to be sensitive, when the estimate does not 
overestimate the true value of ’sufficiently’. The difference between both rules is in how they 
determine this ‘sufficiency’. According to the p %-rule, it is expressed as a rate of the true value 

, while according to the (2,k)-rule, it is expressed as a rate of the aggregate total X. 
Considering this, the concept of the p%-rule seems to be more natural than that of the (2,k)-rule. 
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(2,k)-rules correspond to p%-rules in the following way: If k is set to 
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aggregate, which is safe according to the (2,k)-rule, is also safe according to the p%-rule. This 
can be proven as follows: 
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On the other hand however, not any aggregate, which is safe according to the p %-rule, is also 
safe according to this (2,k)-rule. An example is given below (example 3). In these cases the 
aggregate could be published according to the p %-rule, but would have to be suppressed 

according to the (2,k)-rule, with 
p+

⋅=
100

100100k  . 

Based on the above explained idea, that the concept of the p %-rule is more natural than that of 
the (2,k)-rule, one might interpret this as a tendency for over-suppression in the (2,k)-rule. 

 

Example 3:  

Let p = 10 

Then 
p

k
+

⋅=
100

100100 = 90.9 

Let the total value of a table cell be X  = 110 000 . 

Let the largest contribution be =   52 000 . 1x

Let the second largest contribution be =   50 000 . 2x

 

Then  = 110 000 − 50 000 = 60 000  21ˆ xXx −=
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e.g. the upper estimate will overestimate the true value by 15.4 %. So the 
aggregate is safe according to the p %-rule at p = 10. 

21ˆ xXx −=

On the other hand the two largest contributions are  = 52 000  + 50 000  = 102 000 . 21 xx +
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Literature also discusses an extension of the p %–rules, the so called prior-posterior (p,q)%-rules. 
With the extended rule, one can formally account for general knowledge about individual 
contributions assumed to be around prior to the publication, in particular that the second largest 
contributor can estimate the smaller contributions to within q %. An aggregate is ∑

>
=

2
:

i
iR xX



then considered unsafe when the second largest respondent could estimate the largest contribution 
 to within p percent of  , by subtracting her own contribution and this estimate E( ) from 

the cell total, e.g. when 

1x 1x RX
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. So the aggregate is considered to be sensitive 

when 1x
q
pX R ⋅< . Evidently, it is actually the ratio p/q which determines which cells are 

considered safe, or unsafe. So, any (p,q)-rule with q < 100 can also be expressed as (p*,q*)-rule, 
with q*=100 (choose p* := 100* p/q). 
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When it is realistic to assume that groups of N ( N > 1) respondents contributing to the same cell 
pool their data to disclose the contribution of another respondent, users of τ-ARGUS can change 
the third parameter N of the rule corresponding to this assumption. Note also, that setting 

parameter N to zero yields a rule equivalent to a (1,k)-dominance rule, where k = 100⋅ . 

For a more analytical discussion of sensitivity rules the interested reader is referred to [2]. 

2.2 Table level disclosure risk 

When a table present totals or subtotals along with its ‘inner’ cells, there is a linear relationship 
between the cells of the table. Because of this linear relationship, if it has been established that a 
disclosure risk would be connected to the release of certain cells of a table, then other cells (so 
called ‘complementary’ or ‘secondary’ suppressions) must be suppressed in order to prevent a 
risk of disclosure on the table level. 

Example 3 shows turnover in a hypothetical food production sector as the basis for subexamples 
showing the correspondence between primary cell-level sensitivity measures and table-level 
disclosure control. Example 3.1 begins the discussion by showing the potential problem of table-
level disclosure risk when a minimum frequency rule with parameter N=3 is used to identify cell-
level sensitivity.  

 

Example 4: Table column „turnover“ in the food production sector 

Food production sector turnover number of respondents 

Total T TN  

 thereof   

 bakers 15 000 122 

 butchers 25 000 95 

 millers X XN  

 brewers Y YN  

 others 15 000 51 

T denotes the overall turnover in the food production sector, X and Y the turnover of the millers 
and brewers respectively.  denote the corresponding number of respondents. YX N,N,

Example 4.1: 



Assume that a minimum frequency rule with parameter N=3 is employed for primary 
confidentiality. 

Let the number of millers in the table of example 4 be  = 1. XN

Let the number of brewers in the table of example 4 be   = 3. YN

 

Then the turnover of the millers, X, is unsafe, and must be suppressed. But if no other cell is 
suppressed, X can easily be recalculated through subtraction:   T − 15 000 – 15 000 – 25 000 
–Y – 0 (= X) . A second cell also has to be suppressed (Y for instance) to avoid disclosure. 
In the following we discuss what should be considered when making this choice of a 
complementary suppression: 

Feasibility Interval 

Making use of the linear relations between published and suppressed cell values in a table 
with suppressed entries, it is always possible for any particular suppressed cell of a table, to 
derive upper and lower bounds for its true value. This holds for either tables with non-
negative values, and those tables containing negative values as well, when it is assumed that 
instead of zero, some other (possibly tight) lower bound for any cell is available to data users 
in advance of publication. The interval given by these bounds is called ‘feasibility interval’. 
Example 51 illustrates the calculation of the feasibility interval in the case of a simple two-
dimensional table where all cells may only assume non-negative values: 

Example 5 1 2 Total 

1 X11 X12 7 

2 X21 X22 3 

3 3 3 6 

Total 9 7 16 

For this table the following linear relations hold: 
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Solving this linear problem for a particular suppressed cell, for  for instance, subject to the 
constraints  for all (i,j), yields 3 . So, the feasibility interval for  is [3;6] . 

11X
0≥ijX 611 ≤≤ X 11X

Using linear programming methodology, it is possible for any suppressed cell in a table to derive 
an upper bound ( ) and a lower bound ( ) for the set of feasible values. Feasible means 

here with respect to the linear relations between published and unpublished cell values given by 
the table and also with respect to some a priori constraints for the suppressed cell values such as 

maxX minX

                                                           
1 ([4], Table 10, p 20) 



the assumption that they may only assume non-negative values. In the example above, for cell 
(1,1) these bounds are  = 3 and  = 6 . min

11X

Min

Ii∈

i ≤

yi =

max
11X
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jb j
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ii a =− q ⋅=
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A general, mathematical statement for the linear programming problem to compute the bounds of 
the feasibility interval is given by (c.f. [8]): 

ii yy and, subject to 

   ∑ Jym iij ∈= ,  

   lb SPubyi ∪≤ ,  

   iai ∉

 

where the additive structure of the table is given by the set of linear equations 
[ jbym jiIi ij =∑ ∈ ,  (typically , and ). I, P, and S denote the set of all 

cells, of the sensitive cells, and of the secondary suppressions, respectively, and  are 
constraints on the cell values . 

{ 1,0,1−∈ijm }
ii lbub ,

ia

τ-ARGUS assumes iii albaub − , where q= 100 by default. 

 

Protection Interval 

A proper suppression procedure should ensure that no suppression pattern be considered feasible, 
unless the resulting bounds of the feasibility interval of any sensitive cell cannot be used to 
deduce bounds on an individual respondent contribution that are too close. To address this 
problem technically, safety bounds are determined for any primary suppression. We call the 
interval between these upper and lower bounds ‘protection interval’. In the following, we explain 
how to compute a suitable protection interval. 

 

A cell union of suppressed cells in a row or column of a table with an unsuppressed total , such as 
for instance the union of two primary suppressions or of a primary suppression together with the 
complementary suppression, can of course always be calculated through subtraction. Let us 
reconsider example 4: 

Example 4.2: 

Assume a rule of 3 is employed for primary confidentiality. 

Let the overall number of respondents in the table of example 4 be NT = 268. 

Let the number of millers in the table of example 4 be   = 1. XN

Let the number of brewers in the table of example 4 be   = 1. YN

The table contains two confidential cells: The cell values X and Y must not be published. 
Note, that cells such as these, with only a single respondent contributing to the cell, are 
occasionally referred to as Singletons in the context of secondary cell suppression. 

If we apply the rule of 3 to the union of these suppressed cells, whose value can be obtained 
by subtraction from the column total T:  X + Y = T – 15 000 – 15 000 – 25 000, we find that 



an additional cell must be suppressed, because the number of respondents to the cell union is 
 . Otherwise, the miller might disclose the contribution of the brewer 

by subtracting his own contribution X from the value of the cell union X + Y and vice versa. 
2=+=+ YXYX NNN

Example 4.2 is an instance of exact disclosure. Generally, if unions of suppressed cells in a table 
can be computed from the linear table context, those unions should be safe in order to avoid the 
risk also of approximate disclosure for any particular single contribution to the combination. This 
is especially important, of course, if the effort for such computation is low, as in the case of cell 
unions within the same row or column. 

Example 4.3: 

Assume now, that a (1,85)-rule is employed for primary confidentiality. 

Let the total turnover in the food production sector in example 4 be T = 55 345. 

Let the number of millers in the table of example 4 be   = 3. XN

Let the number of brewers in the table of example 4 be   = 3. YN

Let the sequence of contributions of distinct respondents to X (turnover of millers) be 
x1=300, x2=20, x3=10. 

Let the contribution sequence of Y (turnover of brewers) be y1=5, y2=5, y3=5. 

It can then be easily verified, that X is sensitive according to the (1,85)-rule, while Y is not. 
However, in order to prevent the largest miller from disclosure, it would not be sufficient to 
suppress the turnover of brewers along with the turnover of millers. The turnover of brewers 
is too small to protect the contribution of the largest miller from approximate disclosure. 
More precisely, the turnover of the largest miller still dominates the combined turnover of 
millers and brewers  Z = X + Y     (contribution sequence z1 = 300 > z2 = 20 > z3 = 10 > z4 = 5 
= z5 =5=z6=5  )  

because z1= 293,25345
100
85

5)551020(300
100
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100
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=⋅=+++++⋅=
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 So, for sufficient protection of the primary suppression, one should either suppress another 
cell instead of the turnover of brewers, or should suppress an additional cell along with it.  

It has been proven in general [1] that a necessary condition for the union of a sensitive cell with 
an arbitrary secondary suppressed cell to be non-sensitive is that the value of the secondary 
suppression Y exceed a given minimum size. If the minimum size condition is not fulfilled for a 
complementary suppression Y to a sensitive cell X, then the combination of X and Y will still be 
sensitive. This minimum size depends on the particular “degree of sensitivity” of the sensitive cell 
according to the specific sensitivity rule employed. The formulas given below give calculations of 
the minimum size for the sensitivity rules mentioned above. They specify the minimum size for 
an adequate non-sensitive secondary suppression to protect a sensitive cell with a total cell value 
X and N distinct respondents with contributions . Nxxx ≥≥≥ ...21

Table 1: Minimum size condition for feasible complements 

Sensitivity 
rule 

Minimum size for a feasible 
complement  

(1,k)-rule Xx
k

−1
100  



(n,k)-rule ( ) Xxxx
k n −+++ ...100

21  

p%-rule ( )211100
xxXxp −−−  

(p,q)-rule ( )211 xxXx
q
p −−−  

 

See [2] for more general formulation and evidence of the minimum size requirement. 

The formulas of table 1 can be used to compute bounds for the protection interval: If the distance 
between upper bound of the feasibility interval and true value of a sensitive cell were below the 
minimum size for a feasible complement calculated according to the formulas of table 1, then this 
upper bound could be used to derive an estimate for single contributions of the sensitive cell that 
were too close according to the safety rule employed. 

Example:  The turnover of the millers in example 4.32 (X = 330 with a sequence of 
contributions of distinct respondents   ) is confidential 

according to the (1,85)-rule. If the upper bound 

300,=x1 20,=x 2
max

10=x3

X  for this confidential value 

is below 352,94x
85

100
1 =

1x

 , then it will be dominated by the largest single 

contribution . 

τ-ARGUS therefore adds the cell value X to the minimum size for a feasible complement in order 
to compute an upper bound of the protection interval, also referred to as upper protection level. 
Out of symmetry considerations a lower bound for the protection interval (= lower protection 
level) is usually computed by subtracting this minimum size from the cell value. The protection 
interval given by these bounds would normally, according to the primary confidentiality rule, be 
sufficient to protect the sensitive cell. 

In two important cases, however, the minimum size requirement is not a sufficient criterion for 
the combined cell to be safe. It is not sufficient, if the complementary suppression is an unsafe 
cell itself, and it is not sufficient, when the same respondent can contribute to more than one 
component cell in a combined cell. In these cases, a combination of a sensitive cell and its 
complement may still be sensitive, even though the minimum size requirement is fulfilled for the 
complement. The most prominent case is that of two singleton cells. No matter how large the cell 
values, the combination will be unsafe. For further discussion of this problem, which is often 
referred to as ‘multi-cell disclosure’ see [2]. τ−ARGUS offers heuristic solutions to this problem 
which are explained in the τ−ARGUS manual. 

3 Secondary Cell Suppression in Practice 

The “Secondary Cell Suppression Problem” is how to apply complementary suppressions to a set 
of sensitive cells in such a way as to ensure that the complementary suppressions:  

• create the required uncertainty about the true values of the sensitive cells, but 

• preserve as much information in the table as possible. 

                                                           
2 ) in section 2.2 



A suppression pattern is assumed here to ‘create the required uncertainty about the true values of 
the sensitive cells’ if for any sensitive cell the suppression interval contains the protection interval 
given by the upper and lower protection level computed according to the formulas given above. 

But how to rate the information content of a table, or how to rate the loss of information due to a 
particular suppression pattern? 

To find a good balance between protection of individual response data and provision of 
information – in other words, to take control of the loss of information that obviously can not be 
avoided completely because of the requirements of disclosure control - it is necessary to 
somehow rate the information content of data. [8] presents a mathematical model of the 
secondary cell suppression problem as linear programming problem. Information loss is 
expressed in this model as the sum of costs associated to the secondary suppressions. The idea of 
equating a minimum loss of information with the smallest number of suppressions is probably the 
most natural concept. This would be implemented technically by assigning identical costs to each 
cell. Yet experience has shown that this concept often yields a suppression pattern in which many 
large cells are suppressed, which is undesirable. So, apart from the option to assign identical 
costs, τ−ARGUS offers a choice of cost functions, based on cell frequencies, or cell values, or 
power transformations thereof. Note that several criteria, other than the numeric value, may also 
have an impact on a users perception of a particular cells importance, such as its situation within 
the table (totals and sub-totals are often rated as highly important), or its category (certain 
categories of variables are often considered to be of secondary importance). 

How now to solve the secondary cell suppression problem? τ-ARGUS offers an algorithm based 
on complex optimisation models to find the optimal solution. For larger tables, however, the 
required computation times are prohibitive. Moreover, users may not always be happy with this 
solution because cost functions offered by the current implementation fail to reflect some of the 
issues which affect a users perception of a particular cells importance, such as its situation within 
the table (totals and sub-totals are often rated as highly important), or its category (certain 
categories of variables are often considered to be of secondary importance). Alternatively, 
ARGUS also offers methods based on heuristic approaches. See section 4 for comparison of the 
performance of these alternative methods. 

Tables in the context of secondary cell suppression 

For setting up the secondary cell suppression problem for a table, all the linear relations between 
published and unpublished values of the table have to be considered. This leads us to a crucial 
question: What is a table anyway? In the absence of confidentiality concerns, a statistician creates 
a table in order to show certain properties of a data set, or to enhance comparison between 
different variables. So a single table might literally mix apples and oranges. Secondly, 
statisticians may wish to present a number of those ‘properties’, publishing multiple tables from a 
particular data set. Where does one table end, and the next start? Is the ideal table one that fits 
nicely on a standard size-sheet of paper? With respect to secondary cell suppression, we have to 
think of tables in a different way: 

Firstly we consider the data basis for the table. In a micro-data file suitable for τ−ARGUS, each 
record contains a number of key codes and a number of entries giving respondent data on a 
response variable. If more than one record may correspond to the same respondent, the file must 
also contain an identifying code, the so called ‘holding indicator’. The key codes may be regarded 
as respondent data on some categorical ‘explanatory’ variables. They can be used to group the 
respondents according to certain criteria such as their economic activity, region, size class of 
turnover, legal form, or to categorize a response variable, like for instance fruit production into 
apples, pears, cherries, etc. . When we talk about the number of dimensions in a table, we usually 
mean the number of explanatory variables used to specify groups and categories. A cell in a table 



exhibits the value of (one category of) the response variable for the group of respondents falling 
into the same category for each explanatory variable. In this sense, a table is defined by the set of 
explanatory and response variables.  

Hierarchical and Linked tables 

Data collected within government statistical systems must meet the requirements of many users, 
who differ widely in the particular interest they take in the data. Some may need community level 
data, while others need detailed data on a particular branch of the economy but no regional detail. 
As statisticians, we try to cope with this range of interest in our data, by providing the data at 
several levels of detail. We usually combine explanatory variables in multiple ways, when 
creating tables for publication. If two tables presenting data on the same response variable share 
categories of at least one explanatory variable, there will be cells which are presented in both 
tables – those tables are said to be linked by the cells they have in common. In order to offer a 
range of statistical detail, we use elaborate classification schemes to categorize respondents. Thus, 
a respondent will often belong to various categories of the same classification scheme - for 
instance a particular community within a particular county within a particular state - and may thus 
fall into four categories of the regional classification. 

The structure between the categories of hierarchical variables also implies sub-structure for the 
table. When, in the following, we talk about sub-tables without substructure, we mean a table 
constructed in the following way: 

For any explanatory variable we pick one particular non-bottom-level category (the ‘food 
production sector’ for instance). Then we construct a ‘sub-variable’. This sub-variable consists 
only of the category picked in the first step and those categories of the level below belonging 
to this category (bakers, butchers, etc.). After doing that for each explanatory variable the table 
specified through a set of these sub-variables is free from substructure then, and is a sub-table 
of the original one. 

Any cell within the sub-table does also belong to the original table. Many cells of the original 
table will appear in more than one sub-table: The sub-tables are linked. 

Of course, we must not protect any linked tables, or sub-tables separately. Otherwise it might 
happen that the same cell is suppressed in one table because it is used as secondary suppression, 
while within another table it remains unsuppressed. A user comparing the two tables would then 
be able to disclose confidential cells in the first table. A common approach is to protect tables 
separately, but note any complementary suppression belonging also to one of the other tables; 
suppress it in this table as well, and repeat the cell suppression procedure for this table. This 
approach is called a ‘backtracking procedure’. Though within a backtracking process for a 
hierarchical table the cell-suppression procedure will usually be repeated several times for each 
sub-table, the number of computations required for the process will be much smaller than when 
the entire table is protected all at once. 

It must however be stressed, that a backtracking procedure is not global according to the 
denotation in [2]. See [2] for discussion of problems related to non-global methods for secondary 
cell suppression. 

 

4 Solving the Secondary Cell Suppression Problem 

τ−ARGUS offers a variety of algorithms to find a valid suppression. It is up to the user to 
trade-off quality vs. quantity, that is to decide how much resources (computation time, costs for 
extra software etc.) he wants to spend in order to improve the quality of the output tables with 



respect to information loss. The package offers a choice basically between four different 
approaches which we charcterise briefly in the following 

OPTIMAL(see [8]) This method aims at the optimal solution of the cell suppression problem. 
A feasible solution is offered at an early stage of processing, which is then optimized 
successively. It is up to the user to stop execution before the optimal solution has been found, 
and accept the solution reached so far. The user can also choose the objective of optimization, 
i.e. choose between different measures of information loss. Note that the method relies on high 
performance, commercial OR solvers. 

MODULAR(see [4]) The method subdivides hierarchical tables into sets of linked, 
unstructured tables. The cell suppression problem is solved for each subtable using the 
algorithm of the optimal method (see above). Backtracking of subtables avoids consistency 
problems when cells belonging to more than one subtable are selected as secondary 
suppressions. 

NETWORK(see [3]) Algorithm based on network flows methodology. It aims at a heuristic 
solution of the CSP for 2-dimensional tables. Network flow heuristics are known to be highly 
efficient. The method is able to produce high quality solutions for large tables very quickly. 
τ-ARGUS offers an implementation applicable to 2-dimensional tables with hierarchical 
substructure in one dimension. A license for a commercial OR solver will not be required to 
run the algorithm. 

HYPERCUBE(see [5,9]) The hypercube algorithm GHMITER is a fast alternative to the OR 
based methods. This heuristic is able to provide a feasible solution even for extremely large, 
complex tables without consuming much computer resources. The user, however, has to put 
up with a certain tendency for over-suppression. The variant of the method offered by 
τ-ARGUS involves, like the modular method, backtracking of subtables. 

 

We observed the performance of those secondary cell suppression algorithms on a set of small to 
moderate sized 2- and 3-dimensional hierarchical tables considering information loss (number 
and added value of secondary suppressions at certain hierarchical levels of the tables), and 
disclosure risk. 

Comparison of the results (for details see [7]) proves that, in a situation where a user is interested 
in obtaining a suppression pattern for a single table with rather few, rather small secondary 
suppressions, preferably on the lower levels of the table, the best choice is to use the method 
‘Modular’. For medium sized, 3-dimensional tables, long CPU times (compared to the hypercube 
method) are a nuisance, but quality of the results clearly justify the additional computational 
effort. 

Results obtained by method ‘Optimal’ on the other hand were less convincing: firstly, the 
disclosure risk problem for singleton cells is not solved in the current implementation. Secondly, 
results depend strongly on the particular cost function employed. If the cost function does not 
fully reflect the users idea of a good suppression pattern, performance of method ‘Optimal’ will 
not be worth the additional computational effort (compared to method ‘Modular’) which is quite 
considerable for 3-dimensional tables with elaborate hierarchical structure.  

However, auditing the tables revealed that – because of the backtracking involved - users of the 
modular, and the hypercube method indeed face some disclosure risk: In our tables, we found up 
to 9 percent of primary suppressions where protection lacked. 

In a situation where multiple linked, or extremely large 3-, or more dimensional tables have to be 
protected, with the current version of τ−ARGUS, the user is confined to method ‘Hypercube’. For 



suggestions how to improve the performance of this method for linked tables by specialized 
processing see [6]. 

 

5 Summary 

This paper has introduced into fundamental concepts of secondary cell suppression. The software 
package τ-ARGUS for tabular data protection is based upon those concepts. Using simple 
examples, it has been illustrated how common rules for disclosure risk assessment on the cell 
level naturally lead to certain criteria for the validity of a suppression pattern. It is the objective of 
cell suppression in τ-ARGUS to determine secondary suppressions as to meet these requirements 
of a safe suppression pattern. In order to obtain a safe suppression pattern, however, users have to 
define tables properly. Finally, the paper has mentioned some results of a study comparing 
alternative algorithms for secondary cell suppression in τ−ARGUS. 
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