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Abstract

This paper concerns with Statistical Disclosure Control methods to minimize the information
loss while keeping small the disclosure risk from different data snoopers. A common definition
of protection is introduced and used in four different methodologies. In particular, two Integer
Linear Programming models are described for the well-known Cell Suppression and Controlled
Rounding techniques. Also two relaxed techniques are presented through two associated Linear
Programming models, and called Interval Publication and Cell Perturbation, respectively. A
final discussion shows how to combine the four methods and how to implement a cutting-plane
approach for the exact and heuristic resolution of the combinatorial problems in practice. All
the presented methodologies inherently guarantee protection levels on all cells and against a set
of different intruders (possibly respondents), thus the post Disclosure Auditing phase to test the
protection requirements is unnecessary.

Keywords: Statistical Disclosure Control; Cell Suppression; Rounding; Integer Linear Programming

1 Introduction

Statistical agencies are often required by law or policy to protect the confidentiality of the information

that they collect from persons, businesses, or other units. The microdata is the collection of all

the individual responses, and a statistical table is the aggregation of one variable according to other

variables and including marginal sums. Before releasing statistical tables (or microdata files), these

agencies use a variety of statistical methods to protect their data and to ensure that the risk of

disclosure is controlled and very small. In essence, statistical agencies protect the confidentiality

of the data that they collect by restricting the amount of information in tabular data products (or

microdata) that they release. Therefore, a common characteristic of all the methodologies is that they

reduce the information to limit disclosure risk, but with the aim of minimizing the loss of information.

There are methodologies to protect microdata and others to protect statistical tables. This paper

concerns only with methodologies to protect statistical tables directly, i.e. modifying the table itself
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and not the original microdata. The importance of protecting tabular data has been clearly stated

by governments awarding contracts to conduct research and issue reports on Disclosure Limitation

Methods for Tabular Data Protection. For example, the National Institute of Statistical Sciences

is supporting the U.S. project entitled “Digital Government”, and EUROSTAT is coordinating the

E.U. project entitled “Computational Aspects on Statistical Confidentiality”, both addressing the

protection of tabular data (among other topics).

The most popular methodologies for protecting an statistical table are variants of the well-known

Cell Suppression and Controlled Rounding methods. Nevertheless, the different methodologies are usu-

ally applied by practitioners without sharing similar hypothesis, thus making very hard a comparative

even on the same data. Even more, in practice, some implementations cannot inherently guarantee

the protection requirements and a heavy computational effort must be applied to check the proposed

release. This checking is called Disclosure Auditing phase. See, e.g., Willenborg and de Waal [28] for

a wider introduction to the Statistical Data Protection. This paper presents a common framework

(including concepts, models and algorithms) for several methodologies that implicitly guarantee the

required protections on different cells and against different attackers. Section 1 introduces the main

concepts of the Statistical Disclosure Control problem in a general context. Section 2 considers the

well-known Cell Suppression Methodology, and Section 3 points out a relaxed version here refereed as

Interval Publication methodology. Section 4 deals with the Controlled Rounding Methodology and Sec-

tion 6 proposes a relaxed version named Cell Perturbation Method. For each version two mathematical

models are described emphasizing the common definitions and features. The paper ends with some

conclusions leading to an all-in-one methodology.

2 General Situation

A statistical agency is typically given with a set of n values a = [ai : i ∈ I], where I := {1, . . . , n}.
Vector a is known as “nominal table” and satisfies a set of m equations

∑
i∈I mijyi = bj for j ∈ J ,

where J := {1, . . . ,m}. For convenience of notation the linear system will be denoted by My = b,

thus Ma = b holds. Each solution y of My = b is called congruent table. Matrix M (with n columns

representing the cells and m rows representing the equations) has typically elements mij in {−1, 0, +1}
with one −1 per row associated to the marginal-cell variable, while vector b is typically the zero vector.

Table in Figure 1 is a 2-dimensional table consisting on n := 16 cells and m := 8 equations (one from

each row and from each column in the table). When the table is a 2-dimensional table, then M is the

edge-node matrix of a bipartite graph (see Cox [8]), thus a congruent table can be represented as a

flow circulation in a network and some tools from Graph Theory can be applied. This is not the case

when M is associated to a more complex table.
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A B C Total
Activity I 20 50 10 80
Activity II 8 19 22 49
Activity III 17 32 12 61
Total 45 101 44 190

Figure 1: Investment of enterprises by activity and region.

On statistical tables there could be some sensitive data, i.e., information that cannot be disclosured

since they show confidential information on particular respondents. The sensitive cells in a tabular data

are typically determined by common-sense rules. A typical rule is the so-called dominance rule (see,

e.g., [28]), described as follows. We are given with the microdata from which the table is computed,

and with two input numbers α and β (e.g. α := 80 and β := 3). Whenever the biggest β respondents

from the microdata to value in cell p of the table produce more than α percentage of the total value

ap, then cell p is classified as sensitive. We denote the subset of sensitive cells by P . In the example

represented in Figure 1, cell in Activity II and Region C is assumed to be a sensitive cell to be protected

because (say) it is publicly known that there is only one respondent in Region C dedicated to Activity

II.

In a general situation, all the sensitive cells in a table must be protected against a set of attackers.

The attackers are the intruder or data snoopers that will analyze the final product data and will try to

disclosure confidential information. The aim of the Disclosure Limitation Methods is to reduce the risk

that they succeed. The set of attackers will be denoted by K. Each attacker knows the set of linear

system My = b plus extra information that bound each cell value. For example, the simplest attacker

is the so-called external intruder knowing only that unknown cell values are (say) nonnegative. Other

more accurate attackers known tighter bounds on the cell values, and they are called internal attackers.

For example, an internal attacker could be a respondent that had contributed to cell i with (say) 10

units; then he/she knows that yi ≥ 10, while the external attacker only knows yi ≥ 0. If the internal

attacker also knows that he/she is the only contributor to cell i with value 10, then 10 ≤ yi ≤ 10

when attacking the output data. In general, attacker k is associated with two bounds lbk
i and ubk

i

such that ai ∈ [lbk
i . . . ubk

i ] for each cell i ∈ I. Literature on statistical disclosure control (see, e.g.,

Willenborg and de Waal [28]) typically addresses the situation where |K| = 1, thus protecting the

table against the external intruder with the only knowledge of the linear system and some external

bounds; nevertheless this is a simplification of the real problem in Disclosure Limitation and statistical

offices are interested in protecting tables against several intruders (see, e.g., Jewett [18]).

To protect sensitive cell p containing value ai in a input table, the statistical office is interested

in publishing an output containing several congruent tables, including the original nominal table but

also others such that no attacker can disclosure private information. The output of a Disclosure
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Limitation Method is generally named pattern, and it can assume a particular structure depending on

the methodology considered. The sections of this paper deal with several methodologies, and hence

illustrate different patterns. In all cases they share the following common definition of “protection”

defined as follows.

The congruent tables associated to a pattern must differ so as each attacker analyzing the pattern

will not compute the original value of a sensitive cell within a narrow approximation. For each potential

intruder, the idea is to define a protection range for p and to demand that protection be such that any

value in the range is potentially the correct cell value. To be more precise, by observing the published

pattern, attacker k will compute an interval [yk
p
. . . yk

p] of possible values for each sensitive cell p. The

pattern will be considered valid to protect cell p against attacker k if the computed interval is “wide

enough”. To set up the definition of “wide enough” in a precise way, the statistical office gives three

input parameters for each attacker k and each sensitive cell p with nominal value ap:

• Upper Protection Level: it is a number UPLk
p representing the minimum value for yk

p − ap;

• Lower Protection Level: it is a number LPLk
p representing the minimum value for ap − yk

p
;

• Sliding Protection Level: it is a number SPLk
p representing the minimum value for yk

p − yk
p
.

The values of this parameters can be also defined by using common-sense rules. For example, simple

values for the protection levels are percentages of the nominal value of the cell (e.g., 20%, 15% and

40%, respectively). In more sophisticated situations where intruder k is an original respondent (i.e.,

an internal attacker), the protection levels could be chosen to be proportional to his/her contributions

sk
p to the nominal value of the cell ap and/or to the complement ap − sk

p (see, e.g, Cox [5], Robertson

[25], Sande [26]). Of course, an elementary assumption is that

lbk
p ≤ ap − LPLk

p ≤ ap ≤ ap + UPLk
p ≤ ubk

p

and

ubk
p − lbk

p ≥ SPLk
p,

for each attacker k and each sensitive cell p. For notational convenience, let us also define absolute

protection levels and relative nominal bounds:

lplkp := ap − LPLk
p,

uplkp := ap + UPLk
p,

LBk
i := ai − lbk

i ,

UBk
i := ubk

i − ai.
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In the example represented in Figure 1 the statistical office could be interested in protecting the

sensitive cell (Activity II, Region C) against one attacker with a lower protection level of 10 units, an

upper protection level of 12 units, and a sliding protection level of 0 units.

Given a pattern, the mathematical problems of computing values yk
p

and yk
p are known as attacker

problems for cell p and attacker k. The overall problem of solving the attacker problems for all cells

is named as Disclosure Auditing Problem. The attacker problems associated with cell p and attacker

k can be formulated as two Linear Programming (LP) models on an array of variables y = [yi : i ∈ I]

representing a table. Indeed, an attacker problem is

yk

p
:= min yi

subject to
My = b

lbk
i ≤ yi ≤ ubk

i for all i ∈ I

plus a set of additional constraints that make y feasible according to the published pattern. The

precise additional constraints depend on the structure of the pattern, and therefore on the considered

methodology. The other attacker problem is obtained by replacing the objective function with yk
p :=

max yi. Each section of this paper shows the precise attacker problems for each methodology.

Finally, among all possible valid patterns, the statistical office is interested in finding one with

minimum information loss. The information loss of a pattern is intended to be a measure of the

number of congruent tables in the pattern. Indeed, a valid pattern must always allow the nominal

table to be a congruent table feasible with it, but it must contains also other different congruent tables

so to keep the risk of disclosure controlled. For example, when the pattern contains only the original

table (because there is no sensitive data to be protected) then the loss of information is clearly zero.

The precise definition of loss of information depends on the structure of the pattern, and hence on the

methodology to be considered.

In practice most of the available software are based on techniques to find “good” patterns with

no inherently guarantee on the protection level requirements, i.e. not necessarily valid (see, e.g.,

[11]). Therefore, it is necessary to check the proposed pattern before it is made public by solving the

Disclosure Auditing Problem, and to try a different technique when the result is negative. It is well-

known (see, e.g., Doyle, Lane, Theeuwes and Zayatz [11]) that auditing a pattern could consume many

computing resources. In the next sections we introduce precise methodologies to find a valid pattern (if

any exists) with minimum (or near-minimum) information loss, hence the Disclosure Auditing Problem

is not required.
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A B C Total
Activity I 20 50 10 80
Activity II * 19 * 49
Activity III * 32 * 61
Total 45 101 44 190

Figure 2: Cell Suppression pattern.

3 Cell Suppression Methodology

Cell suppression is one of the most popular techniques for protecting sensitive information in statistical

tables. The standard Cell Suppression technique is based on the idea of protecting the sensitive

information by hiding (suppressing) the values of some cells with a symbol (e.g. ∗). Obviously, the

sensitive cells must be suppressed and they are named primary suppressions, but also other cells must

be suppressed and they are named secondary suppressions.

A pattern in Cell Suppression is then defined by a subset of cells SUP to be unpublished. Obviously,

P ⊆ SUP. Then, the feasible region for the attacker problems associated to attacker k is defined by

My = b
yi = ai if i 6∈ SUP

lbk
i ≤ yi ≤ ubk

i if i ∈ SUP.

Figure 2 illustrates a pattern for the instance in Figure 1, where SUP is the set of cells containing

an asterisk. Assuming that there is one attacker who knows that each missing value is a non-negative

number (i.e., lbk
i = 0 and ubk

i = ∞), then the minimum value y
II,C

for the sensitive cell in row II and

column C can be computed by solving an LP model in which the values yi,j for the suppressed cells in

row i and column j are treated as unknowns, namely

y
II,C

:= min yII,C

subject to
yII,A +yII,C = 30

yIII,A +yIII,C = 29
yII,A +yIII,A = 25

yII,C +yIII,C = 34

yII,A ≥ 0 , yIII,A ≥ 0 , yII,C ≥ 0 , yIII,C ≥ 0.

Notice that the right-hand-side values are known to the attacker, as they can be obtained as the

difference between the marginal and the published values in a row/column.

The maximum value yII,C for the sensitive cell can be computed in a perfectly analogous way,

by solving the LP model maximizing yII,C subject to the same constraints as before. Notice that

each solution of this common set of constraints is a congruent table according with the published
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suppression pattern in Figure 2 and with the extra knowledge of the external bounds (non-negativity

on this example).

In the example, y
II,C

= 5 and yII,C = 30, i.e., the sensitive information is “protected” within

the protection interval [5 . . . 30]. If this interval is considered sufficiently wide by the statistical office

according to the protection level requirements, then the pattern in Figure 2 is valid; otherwise, different

complementary suppressions are needed.

For the definition of the loss of information of a Cell Suppression pattern, it is given an estimation

wi of the loss of information when cell i (with nominal value ai) is not published. Typical definitions

of wi (see, e.g., [28]) are

• wi := ai,

• wi := 1,

• wi := log(ai),

• wi := the number of responses in the microdata contributing to value ai of cell i,

• wi := a (linear) combination of the above criteria.

Then the loss of information of a pattern determined by SUP is defined as sum of wi for all i ∈ SUP.

The problem of finding a valid pattern with minimum loss of information is a very difficult combi-

natorial problem, known as Cell Suppression Problem (CSP, for short). The task is so complex that

there are in literature mainly heuristic approaches (i.e., procedures providing approximated —probably

overprotected— suppression patterns) for special situations. For example, a relevant situation occurs

when there is an entity which contributes to several cells, leading to the so-called common respondent

problem. Possible simplifications valid for this situation consist on replacing all the different attackers

by one stronger intruder with “protection capacities” (see, e.g., Jewett [18] or Sande [27] for details), or

on aggregating some sensitive cells into new “union” cells with stronger protection level requirements

(see, e.g., Robertson [25]). But even the relaxation that consider one intruder (an external attacker)

is an strongly NP-hard problem (see, e.g., Kelly et al. [22]), meaning that it is very unlikely the exis-

tence of an algorithm for the exact solution of CSP which guarantees an efficient (i.e., polynomial-time)

performance for all possible input instances. Previous work on the classical CSP from the literature

mainly concentrate on 2-dimensional tables with marginals and protection against a single attacker.

Heuristic solution procedures have been proposed by several authors, including Cox [4, 8], Sande [26],

Kelly et al. [22], and Carvalho et al. [2]. Kelly [19] proposed a mixed ILP formulation involving a

huge number of variables and constraints (for instance, the formulation involves more than 20,000,000

variables and 30,000,000 constraints for a two-dimensional table with 100 rows, 100 columns and 5%
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sensitive entries). Geurts [17] refined this model, and reported computational experiences on small-

size instances, the largest instance solved to optimality being a table with 20 rows, 6 columns and 17

sensitive cells. Heuristics for 3-dimensional tables have been proposed in Robertson [24], Sande [26],

and Dellaert and Luijten [9]. Fischetti and Salazar [15] proposed a new method capable of solving to

proven optimality, on a personal computer, 2-dimensional tables with about 250,000 cells and 10,000

sensitive entries. An extension of this methodology capable of solving to proven optimality real-world

3- and 4-dimensional tables is presented in Fischetti and Salazar [15], but always protecting against

one intruder (the external attacker). The following section extends the methodologies in [15] to deal

with multiple intruders. A preliminary version was presented in the conference “SDC: From Theory

to Practice”, Eurostat, December 2001 [10].

3.1 Mathematical Model

Let us consider a binary variable xi associated to each cell i ∈ I, assuming value 1 if such cell must be

suppressed in the released pattern, or 0 otherwise. Notice that attacker k will minimize and maximize

unknown values on the set of consistent tables in the pattern, defined by:

My = b

lbk
i ≤ yi ≤ ubk

i for all i ∈ I : xi = 1
yi = ai for all i ∈ I : xi = 0,

equivalently represented as the solution set of the following linear system:

My = b
ai − LBk

i xi ≤ yi ≤ ai + UBk
i xi for all i ∈ I.

}
(1)

Therefore, the CSP optimization problem is to find a value for each xi such that the total loss of the

information in the released pattern is minimized, i.e.:

min
∑
i∈I

wixi (2)

subject to, for each sensitive cell p ∈ P and for each attacker k ∈ K,

• the upper protection requirement must be satisfied, i.e.:

max {yp : (1) holds } ≥ uplkp (3)

• the lower protection requirement must be satisfied, i.e.:

min {yp : (1) holds } ≤ lplkp (4)

• the sliding protection requirement must be satisfied, i.e.:

max {yp : (1) holds } −min {yp : (1) holds } ≥ SPLk
p (5)
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Finally, each variable must assume value 0 or 1, i.e.:

xi ∈ {0, 1} for all i ∈ I. (6)

Mathematical model (2)–(6) contains all the requirements of the statistical office (according with

the definition given in Section 1), and therefore a solution [x∗i : i ∈ I] defines an optimal valid Cell

Suppression pattern. The inconvenient is that it is not an easy model to be solved, since it does

not belong to the standard (Mixed) Integer Linear Programming (ILP). In fact, the existence of

optimization problems as part of the constraints of a main optimization problem classifies the model

in the so-called “Bilevel Mathematical Programming”, which today is not provided with efficient

algorithms to solve the model (2)–(6) even on instances of small size. Observe that the inconvenience

of model (2)–(6) is not the number of variables (which is at most the number of cells, both for the

master optimization problem and for each subproblem in the second level), but the fact there are

nested optimization problems in two levels. The better way to avoid the direct resolution is to look

for a transformation into a classical ILP model, as the following section shows.

3.2 A first model

A first idea arises by observing that the optimization problem in condition (3) can be replaced by the

existence of a congruent table [fkp
i : i ∈ I] such that it is feasible (i.e., it satisfies (1)) and it guarantees

the upper protection level requirement, i.e.:

fkp
p ≥ uplkp.

In the same way, the optimization problem in condition (4) can be replaced by the existence of a

congruent table [gkp
i : i ∈ I] such that it is also feasible (i.e., it satisfies (1)) and it guarantees the

lower protection level requirement, i.e.:

gkp
p ≤ lplkp.

Finally, the two optimization problems in condition (5) can be replaced by the above congruent tables

if they guarantee the sliding protection level, i.e.:

fkp
p − gkp

p ≥ SPLk
p.

Figure 3 shows a first attempt to have an ILP model, where xi, f
kp
i , gkp

i are the variables.

Clearly, this new model is an ILP model, and therefore —in theory— there are efficient approaches

to solve it. Nevertheless, the number of new variables (fkp
i and gkp

i ) is really huge even on small tables.

For example, the model associated with a table with 100 × 100 cells, with 1% sensitive, and 100

attackers would have millions of variables. Therefore, it is necessary another approach to transform

model (2)–(6) into an ILP model without adding so many additional variables.
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min
∑
i∈I

wixi

subject to:
xi ∈ {0, 1} for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I mijf

kp
i = bj for all j ∈ J

ai − LBk
i xi ≤ fkp

i ≤ ai + UBk
i xi for all i ∈ I

∑
i∈I mijg

kp
i = bj for all j ∈ J

ai − LBk
i xi ≤ gkp

i ≤ ai + UBk
i xi for all i ∈ I

fkp
p ≥ uplkp

gkp
p ≤ lplkp

fkp
p − gkp

p ≥ SPLk
p.

Figure 3: First ILP model for Cell Suppression.

3.3 A second model

An alternative approach which does not add any additional variable follows the idea described in

Fischetti and Salazar [15] for the Cell Suppression problem against one attacker.

Imposing the upper protection level requirements

Based on the Farkas’ Lemma, it is possible to replace the second level subproblems of model (2)–(6)

by linear constraints on the xi variables. Indeed, assuming that values yi in a congruent table are

continuous numbers, the two LP models in conditions (3)–(5) can be rewritten in their dual format.

More precisely, by Dual Theory in Linear Programming (see, e.g., Wolsey [29]):

max {yp : (1) holds }

is equivalent to

min
∑
j∈J

γjbj +
∑
i∈I

[αi(ai + UBk
i xi)− βi(ai − LBk

i xi)]
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subject to
αp − βp +

∑
j∈J mpjγj = 1

αi − βi +
∑

j∈J mijγj = 0 for all i ∈ I \ {p}
αi ≥ 0 for all i ∈ I
βi ≥ 0 for all i ∈ I

γj unrestricted in sign for all j ∈ J.





(7)

Because of (7) and [ai : i ∈ I] is a consistent table, we have

∑
j∈J

γjbj +
∑
i∈I

(αiai − βiai) =
∑
i∈I

∑
j∈J

γjmijai +
∑
i∈I

(αi − βi)ai = ap.

Hence the above LP model can be rewritten as

ap + min
∑
i∈I

(αiUBk
i + βiLBk

i )xi

subject to αi, βi, γj satisfying (7).

From this observation, condition (3) can be now written as:

∑
i∈I

(αiUBk
i + βiLBk

i )xi ≥ UPLk
p for all αi, βi, γj satisfying (7).

In other words, the last system defines a family of linear constraints, in the x-variables only, repre-

senting the condition (3) which concerns with the upper protection level requirement for sensitive cell

p and attacker k.

Notice that this family contains in principle an infinite number of constraints, each associated with

a different point [αi : i ∈ I; βi : i ∈ I; γj : j ∈ J ] of the polyhedron defined by (7). However, it

is well known that only the extreme points (and rays) of such polyhedron can lead to undominated

constraints, i.e., a finite number of such constraints is sufficient to impose the upper protection level

requirement for a given sensitive cell p and a given attacker k. Again, there is in infinite number

of points in (7), but only the one corresponding to extreme points of the polyhedron (7), and it is

well-known that this is a finite number (see, e.g., Wolsey [29]).

Imposing the lower protection level requirements

In a similar way, the optimization problem in (4) is:

−max {−yp : (1) holds } ,

which, by Duality Theory, is equivalent to

−min
∑
j∈J

γjbj +
∑
i∈I

[αi(ai + UBk
i xi)− βi(ai − LBk

i xi)]
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subject to
αp − βp +

∑
j∈J mpjγj = −1

αi − βi +
∑

j∈J mijγj = 0 for all i ∈ I \ {p}
αi ≥ 0 for all i ∈ I
βi ≥ 0 for all i ∈ I

γj unrestricted in sign for all j ∈ J.





(8)

Because of (8) and [ai : i ∈ I] is a consistent table, we have

∑
j∈J

γjbj +
∑
i∈I

(αiai − βiai) =
∑
i∈I

∑
j∈J

γjmijai +
∑
i∈I

(αi − βi)ai = ap.

Hence the above linear program can be rewritten as

−ap −min
∑
i∈I

(αiUBk
i + βiLBk

i )xi

subject to αi, βi, γj satisfying (8).

From this observation, condition (4) can be now written as:

∑
i∈I

(αiUBk
i + βiLBk

i )xi ≥ LPLk
p for all αi, βi, γj satisfying (8).

In other words, the last system defines a family of linear constraints, in the x-variables only, repre-

senting the condition (4) which concerns with the lower protection level requirement for sensitive cell

p and attacker k.

Imposing the sliding protection level requirements

As to the sliding protection level for sensitive cell p and attacker k, the requirement is that

SPLk
p ≤ max{yp : (1) hold }+ max{−yp : (1) hold }.

Again, by LP duality, this condition is equivalent to

SPLk
p ≤ min{

∑
j∈J

γjbj +
∑
i∈I

[αi(ai + UBk
i xi)− βi(ai − LBk

i xi)] : (7) holds }+

min{
∑
j∈J

γjbj +
∑
i∈I

[αi(ai + UBk
i xi)− βi(ai − LBk

i xi)] : (8) holds }.

Therefore, the feasibility condition can now be formulated by requiring

SPLk
p ≤

∑
j∈J

(γj + γ′j)bj +
∑
i∈I

[(αi + α′i)(ai + UBk
i xi)− (βi + β′i)(ai − LBk

i xi)]

for all α, β, γ satisfying (7) and for all α′, β′, γ′ satisfying (8),

or, equivalently,

∑
i∈I

[(αi + α′i)UBk
i + (βi + β′i)LBk

i ]xi ≥ SPLk
p

for all α, β, γ satisfying (7) and for all α′, β′, γ′ satisfying (8).
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min
∑
i∈I

wixi

subject to:
xi ∈ {0, 1} for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I

[αiUBk
i + βiLBk

i ]xi ≥ UPLk
p

for all α, β, γ satisfying (7)

∑
i∈I

[α′iUBk
i + β′iLBk

i ]xi ≥ LPLk
p

for all α′, β′, γ′ satisfying (8)

∑
i∈I

[(αi + α′i)UBk
i + (βi + β′i)LBk

i ]xi ≥ SPLk
p

for all α, β, γ satisfying (7) and

for all α′, β′, γ′ satisfying (8).

Figure 4: Second ILP model for Cell Suppression.

Overall model

In conclusion, Figure 4 summarizes an alternative model to (2)–(6) with only the 0-1 variables. The

inequalities in the model are called capacity constraints in analogy with similar constraints introduced

in Fischetti and Salazar [15] for enforcing a sufficient “capacity” of certain cuts in the network rep-

resentation of problem on 2-dimensional tables with marginals. Intuitively, the capacity constraints

force to suppress (i.e., to set xi = 1) a sufficient number of cells whose positions within the table

and contributions to the overall protection are specified by the dual variables (α, β, γ) of the attacker

subproblems.

Trying to solve ILP models, standards approaches in Mathematical Programming are based on

branch-and-bound schemes, where the bound is based on solving the model without the integrality

conditions on the variables through an LP solver. This relaxed model is called called LP relaxation,

and it is typically strengthened by introducing other valid inequalities. The overall procedure is known

as branch-and-cut. See, e.g., Wolsey [29] for details.
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A B C Total
Activity I [18 . . . 24] 50 [6 . . . 12] 80
Activity II [4 . . . 10] 19 [20 . . . 26] 49
Activity III 17 32 12 61
Total 45 101 44 190

Figure 5: Interval Publication pattern.

The solution of the LP relaxation of the first model (in Figure 3) can in principle be obtained in

polynomial time, as it involves a number of variable and constraints which is (huge but) polynomially

bounded in the input size. In practice, however, the model cannot be handled effectively, even for very

small instances.

At first glance, the LP relaxation of the second model in (Figure 4) seems even more difficult to

solve due to the exponential number of capacity constraints needed. In fact, in the second model the

reduction on the number of variables was obtained through the introduction of a really huge number of

inequalities, which cannot be handled explicitly by any LP solver. However, for a given CSP instance

just a few capacity constraints are typically needed in the LP relaxation to force the protection level

requirements. In fact, experience reported in Fischetti and Salazar [15] shows that the number of

capacity constraints that need to be incorporated explicitly in the model seldom exceeds 4–5 times

the number of sensitive cells, a quite reasonable figure for practical solution approaches. Although we

cannot decide in advance which capacity constraints are the relevant ones, we can apply a dynamic

constraint-generation technique that identifies them “on the fly”, during the solution of a relaxed LP

problem.

4 Interval Publication

In the Interval Publication Methodology a pattern is a set of intervals, one [y−i . . . y+
i ] for each cell

i. For each cell i and each value yi ∈ [y−i . . . y+
i ] there is a congruent tables y′ where y′i = yi and

y′l ∈ [y−l . . . y+
l ] for all l ∈ I. For the instance in Figure 1 a feasible pattern could be the considered in

Figure 5. Then, the feasible region for the attacker problems associated to attacker k is defined by

My = b
y+

i ≤ yi ≤ y−i for all i ∈ I;

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.

The input parameters w+
i and w−

i can be defined by common-sense rules similar to the ones mentioned

for the Cell Suppression technique.

The loss of information for publishing [y−i . . . y+
i ] instead of ai can be measure as a proportion of

ai− y−i and of y+
i − ai. To this end two input parameters w−

i and w+
i are given for each cell i, and the
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“loss of information” of a pattern is defined as

∑
i∈I

w+
i (y+

i − ai) + w−
i (ai − y−i ).

The Interval Publication Methodology (introduced by Fischetti and Salazar [16] against one at-

tacker with the name Partial Cell Suppression Methodology) is quite related to the Cell Suppression

Methodology described in Section 2, but they differ in important features. Indeed, from a Cell Suppres-

sion pattern each attacker, after solving the disclosure auditing problem, will replace the missing values

by intervals of possible values. Therefore, from an attacker point of view, patterns from both methods

could have the same form. Nevertheless, the classical Cell Suppression methodology is a ”yes-or-not”

approach, where a cell must be published or not, while in the Interval Publication the value of each

unsafe cell is replaced by an interval that can be more or less wide. That is why the Interval Protection

method was originally named Partial Cell Suppression. This extra freedom in Interval Publication has

the advantage of providing patterns containing an smaller number of congruent tables than the ones

from classical Cell Suppression, and hence increasing the data utility of the pattern to the user. In

other words, the set of congruent tables associated to a valid Cell Suppression pattern coincides with

the set of congruent tables associated to a valid Interval Publication pattern, but the reverse is not

true. Since the region of valid patterns in Interval Publication contains the region of valid patterns in

Cell Suppression, one could expect to find solutions with smallest loss of information.

Another important advantage of the Interval Publication methodology is that the optimization

problem associated to it (called Interval Publication Problem, IPP for short) has a much simpler

computational complexity (i.e., it admits a polynomial algorithm). Nevertheless, optimal Interval

Publication patterns have the disadvantage of containing more intervals than missing values in optimal

Cell Suppression patterns.

The next sections presents two mathematical models generalizing the ones presented in Fischetti

and Salazar [16] against one attacker, here extended to allow protection against a set of different

attackers.

4.1 A first model

Our first LP model for IPP requires the introduction of two continuous variables z+
i and z−i for each

i ∈ I, which will represent the relative increment and decrement, respectively, of the internal from the

nominal value ai. Hence, the published intervals will be defined by y+
i := ai + z+

i and y−i := ai − z−i .

Moreover, for each attacker k ∈ K and each sensitive cell p ∈ P , we need auxiliary continuous variables

fkp = [fk
i : i ∈ I] and gkp = [gk

i : i ∈ I] defining tables which are consistent with the published intervals,

and certificating the fulfillment of the protection level requirements. The model then reads as in Figure

6.
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min
∑
i∈I

w+
i z+

i + w−
i z−i

subject to:
z+

i ≥ 0 for all i ∈ I
z−i ≥ 0 for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I mijf

kp
i = bj for all j ∈ J

lbk
i ≤ fkp

i ≤ ubk
i for all i ∈ I

ai − z−i ≤ fkp
i ≤ ai + z+

i for all i ∈ I

∑
i∈I mijg

kp
i = bj for all j ∈ J

lbk
i ≤ gkp

i ≤ ubk
i for all i ∈ I

ai − z−i ≤ gkp
i ≤ ai + z+

i for all i ∈ I

fkp
p ≥ uplkp

gkp
p ≤ lplkp

fkp
p − gkp

p ≥ SPLk
p.

Figure 6: First ILP model for Interval Publication.

The model involves a really huge number of auxiliary variables fkp
i and gkp

i and of linking constraints

between the (z+, z−) and the auxiliary variables.

4.2 A second model

As in previous section, it is again possible to avoid the explicit introduction of the auxiliary variables

fkp and gkp (k ∈ K and p ∈ I) along with the associated linking constraints, by using standard LP

Duality Theory. Indeed, the feasible region of the attacker problems associated to attacker k is now

defined by: ∑
i∈I mijyi = bj for all j ∈ J

ai − LBk
i ≤ yi ≤ ai + UBk

i for all i ∈ I
ai − z−i ≤ yi ≤ ai + z+

i for all i ∈ I.



 (9)
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By similar algebraic considerations as the derived in Section 2, we obtain the second ILP model

illustrated in Figure 7, where

α1
p + α2

p − β1
p − β2

p +
∑

j∈J mpjγj = 1

α1
i + α2

i − β1
i − β2

i +
∑

j∈J mijγj = 0 for all i ∈ I \ {p}
α1

i ≥ 0 for all i ∈ I
α2

i ≥ 0 for all i ∈ I
β1

i ≥ 0 for all i ∈ I
β2

i ≥ 0 for all i ∈ I
γj unrestricted in sign for all j ∈ J,





(10)

and
α1

p + α2
p − β1

p − β2
p +

∑
j∈J mpjγj = −1

α1
i + α2

i − β1
i − β2

i +
∑

j∈J mijγj = 0 for all i ∈ I \ {p}
α1

i ≥ 0 for all i ∈ I
α2

i ≥ 0 for all i ∈ I
β1

i ≥ 0 for all i ∈ I
β2

i ≥ 0 for all i ∈ I
γj unrestricted in sign for all j ∈ J.





(11)

Constraints in the second model are named the capacity constraints in analogy with the similar

constraints of the second Cell Suppression model in Figure 4.

4.3 Combining Cell Suppression and Interval Publication

It is possible to embed the Cell Suppression and the Interval Publication methodologies into one. This

combined methodology will have advantages of both approaches since, for example, it will benefic

from providing the Interval Publication pattern while it could keep control on the maximum number

of proper intervals, and also on their minimum width.

In the unified methodology a pattern is a set of intervals, as in the Interval Publication method,

Therefore, for the mathematical description, the variables z+
i and z−i introduced in Section 4.1 are

relevant. But now, it is also useful to consider a binary variable xi for each cell i, which will assume

value 1 if and only if z+
i > 0 or z−i > 0. These binary variables play a similar role as the ones

introduced in Section 3.1.

It is assumed to be given with three input numbers wi, w
+
i , w−

i for each cell i from the statistical

office, so the cost of a pattern will be defined by

w+
i z+

i + w−
i z−i + wixi.

Then a first ILP model is similar to the one in Figure 6 where also UBk
i and LBk

i must be replaced

by UBk
i xi and LBk

i xi, respectively. A second model without the fkp and gkp follows in a similar way

from the one in Figure 7.
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min
∑
i∈I

w+
i z+

i + w−
i z−i

subject to:
z+

i ≥ 0 for all i ∈ I
z−i ≥ 0 for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I

α1
i UBk

i + α2
i z

+
i + β1

i LBk
i + β2

i z
−
i ≥ UPLk

p

for all α1, α2, β1, β2, γ satisfying (10)

∑
i∈I

α′1i UBk
i + α′2i z+

i + β′1i LBk
i + β′2i z−i ≥ LPLk

p

for all α′1, α′2, β′1, β′2, γ′ satisfying (11)

∑
i∈I

(α1
i + α′1i )UBk

i + (α2
i + α′2i )z+

i + (β1
i + β′1i )LBk

i + (β2
i + β′2i )z−i ≥ SPLk

p

for all α1, α2, β1, β2, γ satisfying (10) and

for all α′1, α′2, β′1, β′2, γ′ satisfying (11).

Figure 7: Second ILP model for Interval Publication.

The relevant observation is that on the new models it is possible to add a constraint to keep the

number of intervals smaller than a given threshold q, i.e.

∑
i∈I

xi ≤ q.

5 Controlled Rounding Methodology

In Controlled Rounding Methodology we are also given with an input base number ri for each cell i.

Let us denote by baic the multiple of ri obtained by rounding down ai, and by daie the multiple of ri

obtained by rounding up ai. When ri is such that baic = daie, we redefine ri := 0, hence ri = daie−baic
for all i ∈ I.

A pattern in the Controlled Rounding Methodology is a congruent table v = [vi : i ∈ I] such that

vi ∈ {baic, daie}. (12)
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A B C Total
Activity I 20 50 10 80
Activity II 10 20 20 50
Activity III 20 30 10 60
Total 50 100 40 190

Figure 8: Controlled Rounding pattern with ri = 10 for all i ∈ I.

Figure 8 gives an example of pattern when ri := 10 (i ∈ I) for the instance in Figure 1. The values ri

are assumed to be known by the attackers. The feasible region for the attacker problems associated

to attacker k is defined by

My = b
vi − ri ≤ yi ≤ vi + ri for all i ∈ I

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.

The natural concept of “loss of information” of a cell is defined as the difference between the

nominal value and the published value, and then the loss of information of a pattern is the sum of all

the individual loss of information.

A main difficulty of this methodology is that a feasible pattern does not always exists, even when

all ri are the same base numbers. The combinatorial problem of finding (if any) a protected pattern

with minimum information loss is called Controlled Rounding Problem (CRP). The problem was first

introduced by Bacharach [1] in the context of replacing nonintegers by integers in tabular arrays,

and actually it arises in several application contexts. To reduce the complexity of finding a feasible

pattern, typically all base numbers are equal, as in the example. Nevertheless, with such hypothesis the

existence of a feasible pattern is ensured on 2-dimensional tables, but not on general multi-dimensional

tables with marginal totals; Causey, Cox and Ernst [3] showed a simple infeasible 2× 2× 2 instance.

Kelly, Golden and Assad [20] proposed a branch-and-bound procedure for the case of 3-dimensional

tables, based on the LP relaxation of an ILP model. Heuristic methods for CRP on multi-dimensional

tables have been proposed by several authors, including Kelly, Golden and Assad [20, 23]. Fischetti and

Salazar [14] proposed a branch-and-bound procedure for its resolution based on Linear Programming,

and some relaxation of CRP when it is infeasible. We present here a general model for linked and

hierarchical tables against different attackers.

Let us consider a binary variable xi for each cell i, representing

xi =

{
0 if vi = baic,
1 if vi = daie.

Note that when a solution xi is given, then the published table is determined by vi := baic + rixi for

all i ∈ I.

The lost of information of a cell i can now be written as a constant when xi = 0, plus a (positive
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min
∑
i∈I

wixi

subject to: ∑
i∈I mij(baic+ rixi) = bj for all j ∈ J

xi ∈ {0, 1} for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I mijf

kp
i = bj for all j ∈ J

lbk
i ≤ fkp

i ≤ ubk
i for all i ∈ I

baic+ rixi − ri ≤ fkp
i ≤ baic+ rixi + ri for all i ∈ I

∑
i∈I mijg

kp
i = bj for all j ∈ J

lbk
i ≤ gkp

i ≤ ubk
i for all i ∈ I

baic+ rixi − ri ≤ gkp
i ≤ baic+ rixi + ri for all i ∈ I

fkp
p ≥ uplkp

gkp
p ≤ lplkp

fkp
p − gkp

p ≥ SPLk
p.

Figure 9: First ILP model for Controlled Rounding.

or negative) difference wi if xi = 1. Therefore, the loss of information of the pattern defined by x is a

constant plus
∑

i∈I wixi.

To write a first model it is again convenient to consider variables fkp = [fkp
i : i ∈ I] and gkp =

[gkp
i : i ∈ I] to ensure the existence of consistent tables certificating the fulfillment of the protection

level requirements. Then a mathematical model is illustrated in Figure 9.

Once again, by using basic LP Duality Theory, it is possible to eliminate variables fkp and gkp

from the first model. This mathematical operation leads to the second model in Figure 10.

6 Cell Perturbation Methodology

The main disadvantage of the Controlled Rounding methodology is that a protected pattern does not

always exist due to the tight constraints (12). Therefore, a different way of ensuring the existence of

protected patterns is to relax conditions (12) and to look for a congruent table v = [vi : i ∈ I] such

20



min
∑
i∈I

wixi

subject to: ∑
i∈I mij(baic+ rixi) = bj for all j ∈ J

xi ∈ {0, 1} for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I

α1
i UBk

i + α2
i (baic+ rixi + ri − ai) + β1

i LBk
i + β2

i (ai − baic − rixi + ri) ≥ UPLk
p

for all α1, α2, β1, β2, γ satisfying (10)

∑
i∈I

α′1i UBk
i + α′2i (baic+ rixi + ri − ai) + β′1i LBk

i + β′2i (ai − baic − rixi + ri) ≥ LPLk
p

for all α′1, α′2, β′1, β′2, γ′ satisfying (11)

∑
i∈I

(α1
i + α′1i )UBk

i + (α2
i + α′2i )(baic+ rixi + ri − ai) +

(β1
i + β′1i )LBk

i + (β2
i + β′2i )(ai − baic − rixi + ri) ≥ SPLk

p

for all α1, α2, β1, β2, γ satisfying (10) and

for all α′1, α′2, β′1, β′2, γ′ satisfying (11).

Figure 10: Second ILP model for Controlled Rounding.

that

vi ∈ [baic . . . daie]. (13)

where baic and daie are given in advance from the statistical office such that baic ≤ ai ≤ daie. Figure

11 shows a possible Cell Perturbation pattern for the nominal table in Figure 1. Table v is then a

pattern in the Cell Perturbation Methodology. As in the Controlled Rounding methodology, the loss

of information of a cell i is defined proportional to |vi− ai|, and the “loss of information” of a pattern

is the sum of the loss of information of all the cells.

Obviously, if all constraints (12) are removed and no one new is required, then the valid pattern

with minimum loss of information is the nominal table. Hence, some constraints from (12) must

remains (e.g., the one concerning the sensitive cells) or, in a much simple way, it is required that the

published values in each sensitive cell must be equal to some given values; for example:

vp = dape for all p ∈ P.
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A B C Total
Activity I 20 50 10 80
Activity II 7 16 26 49
Activity III 18 35 8 61
Total 45 101 44 190

Figure 11: Cell Perturbation pattern.

Let ri := daie − baic a (possibly) known information for attackers. Then the attacker problems

associated to attacker k are now exactly the same as in the Controlled Rounding Methodology, i.e.

My = b
vi − ri ≤ yi ≤ vi + ri for all i ∈ I;

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.

There are in literature several methodologies to protect tables by data perturbation (see, e.g.,

Evans, Zayatz and Slanta [13], Duncan and Fienberg [12]) but, as far as we know, they all concern

with modifying the microdata and, therefore, there is less control on the final protection interval of

each cell in the published pattern.

To write an LP model for the Cell Perturbation model, it is convenient to introduce two continuous

variables z−i and z+
i for each cell i, with the following meaning:

z−i := max{0, ai − vi}

z+
i := max{0, vi − ai}.

Let w−
i be the given cost for each unit of z−i , and w+

i be the given cost for each unit of z+
i . Hence the

objective function is ∑
i∈I

w+
i z+

i + w−
i z−i

as in the Controlled Rounding methodology.

For a first model it is again convenient to introduce additional variables fkp and gkp for each

attacker k and each sensitive cell p. Then Figure 12 shows a first LP model.

Again, as it has been done with the previous methodologies, it is possible to remove the requirement

of variables fkp and gkp by using basic Duality Theory on the first model, leading to the second model

showed in Figure 13.

As in the example, an optimal valid pattern for Cell Perturbation could request too many modified

values. To overcome this disadvantage, as proposed for the Partial Suppression Methodology, it could

be possible to bound the maximum number of nominal values to be modified. To this end, an additional

binary variable xi is required for each cell i ∈ I. Variable xi assumes value 1 when vi 6= ai (i.e.,

z+
i + z−i > 0) and 0 otherwise. This extra variable can be inserted in the models and linked to the
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∑
i∈I

w+
i z+

i + w−
i z−i

subject to: ∑
i∈I mij(ai + z+

i − z−i ) = bj for all j ∈ J
z+

i = daie − ai for all i ∈ P
z−i = 0 for all i ∈ P

0 ≤ z+
i ≤ daie − ai for all i 6∈ P

0 ≤ z−i ≤ ai − baic for all i 6∈ P

and, for all p ∈ P and all k ∈ K:

∑
i∈I mijf

kp
i = bj for all j ∈ J

lbk
i ≤ fkp

i ≤ ubk
i for all i ∈ I

ai + z+
i − z−i − ri ≤ fkp

i ≤ ai + z+
i − z−i + ri for all i ∈ I

∑
i∈I mijg

kp
i = bj for all j ∈ J

lbk
i ≤ gkp

i ≤ ubk
i for all i ∈ I

ai + z+
i − z−i − ri ≤ gkp

i ≤ ai + z+
i − z−i + ri for all i ∈ I

fkp
p ≥ uplkp

gkp
p ≤ lplkp

fkp
p − gkp

p ≥ SPLk
p.

Figure 12: First ILP model for Cell Perturbation.

other variable with constraints:

0 ≤ z+
i ≤ (daie − ai)xi for all i ∈ I

0 ≤ z−i ≤ (ai − baic)xi for all i ∈ I.

The objective function would then include a cost wi for modifying a nominal value ai, hence the

mathematical models have the following new objective function:

∑
i∈I

w+
i z+

i + w−
i z−i + wixi.

Then, on the new models, it is again possible to add a constraint to keep the number of intervals

smaller than a given threshold q, i.e. ∑
i∈I

xi ≤ q.
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∑
i∈I

w+
i z+

i + w−
i z−i

subject to: ∑
i∈I mij(ai + z+

i − z−i ) = bj for all j ∈ J
z+

i = daie − ai for all i ∈ P
z−i = 0 for all i ∈ P

0 ≤ z+
i ≤ daie − ai for all i 6∈ P

0 ≤ z−i ≤ ai − baic for all i 6∈ P

and, for all p ∈ P and all k ∈ K:

∑
i∈I

α1
i UBk

i + α2
i (z

+
i − z−i + ri) + β1

i LBk
i + β2

i (−z+
i + z−i + ri) ≥ UPLk

p

for all α1, α2, β1, β2, γ satisfying (10)

∑
i∈I

α′1i UBk
i + α′2i (z+

i − z−i + ri) + β′1i LBk
i + β′2i (−z+

i + z−i + ri) ≥ LPLk
p

for all α′1, α′2, β′1, β′2, γ′ satisfying (11)

∑
i∈I

(α1
i + α′1i )UBk

i + (α2
i + α′2i )(z+

i − z−i + ri) +

(β1
i + β′1i )LBk

i + (β2
i + β′2i )(−z+

i + z−i + ri) ≥ SPLk
p

for all α1, α2, β1, β2, γ satisfying (10) and

for all α′1, α′2, β′1, β′2, γ′ satisfying (11).

Figure 13: Second ILP model for Cell Perturbation.

7 Conclusion

We have introduced several methods to protect sensitive data when publishing a table. The contribu-

tion of this work is a unified mathematical definition of the optimization problem under four different

methodologies: Cell Suppression, Interval Publication, Controlled Rounding, and Cell Perturbation.

For each methodology, we have stablished the concept of protection pattern and information loss,

and two mathematical models have been provided for each methodology. A first one contains a

polynomial number of variables and constraints. Nevertheless, a serious disadvantage of the first

model is that it uses two variables fkp
i and gkp

i for each attacker k ∈ K, sensitive cell p ∈ P and

cell i ∈ I. Basic Dual Theory in Linear Programming provides a procedure to avoid the use of these

variables by adding some “capacity constraints”, leading to a second mathematical model.
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In all the four methodologies, the valid patterns provide feasible ranges of values for the sensitive

cells such that there are congruent tables to guarantee all the protection level requirements. Then,

the Disclosure Auditing problem does not need to be solved to test validity of the output patterns.

This feature represents a large saving of computational effort, specially when the protection is required

against several attackers.

When convenient, it is also possible to apply a combination of the different methodologies. Indeed,

for example, suppose there is a partition of the cell set I into I1 ∪ I2, and the statistical office is

interested in publishing intervals [y−i . . . y+
i ] when i ∈ I1, using Interval Publication Methodology, and

publishing perturbed values vi when i ∈ I2, using Cell Perturbation Methodology. Then a combined

methodology can be mathematically modelled by observing that the feasible region of the attacker

problems associated to attacker k is:

My = b
vi − ri ≤ yi ≤ vi + ri for all i ∈ I1

y−i ≤ yi ≤ y+
i for all i ∈ I2

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.

Then, by combining the appropriated variables it is also possible the write two models as this paper

have showed for each single methodology.

From the first models it is clear that the optimization problems of Interval Publication and Data

Perturbation methodologies are both polynomially solvable as they do not require integer variables.

The combinatorial problems associated to Cell Suppression and Controlled Rounding methodologies

are NP-hard problems, but still the ILP models here presented are suitable for been solved with

branch-and-bound approaches (see, e.g., Fischetti and Salazar [15] for computational experiences on

the Cell Suppression models).

The second models are more suitable to be solved by cutting-plane approaches. Indeed, the main

idea is that not all the capacity constrains must be in the master problem since they are in an exponen-

tial number. Within an iterative procedure, only some of them are considered, and a missing important

one can be computed from the dual variables after solving a linear program (the subproblem). Then,

the subproblem feeds the master problem with capacity constraints, but it is also important to clean

unnecessary constraint from the master problem, so to keep the master problem in a size manage-

able by an LP solver. See, e.g., Wolsey [29] for details on cutting-plane methods in Mathematical

Programming.

An important remark when solving the second models of Cell Suppression and of Controlled Round-

ing arises by observing that each capacity constraint has the form:

∑
i∈I

d′ixi + d′′i (1− xi) ≥ d0

where d′i and d′′i are non-negative real numbers. Since xi ∈ {1, 0}, the observation allows us to
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skip the constraint when d0 is negative and, in other cases, to round down values d′i and/or d′′i to d0

whenever they are bigger than d0. This simple operation leads to strengthened the LP relaxation of the

models, which is of fundamental use to produce lower bounds and speed up enumerative and heuristic

approaches. Also others additional inequalities can be inserted to produce a further improvement of

the LP relaxation, like the so-called cover inequalities (see, e.g., Wolsey [29]).

This paper has presented a unified mathematical framework for the four methodologies, so all differ

in the structure of the output patterns, but share the same concept of protection. It is also possible

to consider other common features using the presented mathematical models. Indeed, considering a

model with the xi variables for each methodology, it is easy to observe that the statistical office could

also control the number of suppressions, intervals, roundings and perturbations by just including

constraint: ∑
i∈I

xi ≤ q,

where q is the desiderated upper bound. Moreover, it is possible to extend the methodologies to

consider “conditional protection levels on nonsensitive cells”. Indeed, if it is required that an interval

[y−i . . . y+
i ] must satisfy y+

i − y−i > SPLi for a given non-zero number SPLi when i is a nonsensitive cell

and y+
i 6= y−i , then this conditional request can be inserted in the presented mathematical model by

considering i as a sensitive cells with sliding protection level SPLi xi. The same consideration applies

to upper and lower protection levels.
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