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1. Introduction 
 
Empirical economic researchers criticize the lack of access to economic microdata of official statistics: The 
information potential of surveys conducted by the statistical offices at enterprises and local units is only partially 
exploited. In principle, statistical offices would like to provide business microdata to empirical economic 
researchers to expand the uses of these data. As major information providers, the statistical offices support any 
endeavours to make extensive use of their data holdings. According to the European (and also the German) law 
however, it is legal only to give access to microdata by way of providing scientists and researchers with ‘de facto 
anonymised’ microdata.  
 
In the area of statistics on households and individuals this way of giving access to microdata has been pursued 
for several years. Where microdata on enterprises and local units are concerned, however, de facto 
anonymisation is considered to be more difficult. The de facto anonymisation of enterprise and local unit data 
requires sophisticated techniques but, even internationally, methods are not yet fully explored.  
 
As an important step in the work on this topic so called data perturbation techniques are investigated. One group 
of these techniques that has been discussed for more than 20 years now is masking the date by adding noise. 
Several  algorithms were developed that have different characteristics. The simplest algorithm consists of adding 
white noise to the data. More sophisticated methods use more or less complex transformations of the data and 
more complex error-matrices to improve the results. This paper gives an overview over the algorithm suggested 
by Sullivan.  
 
From the theoretical point of view this algorithm is of special interest, because it preserves several properties of 
the data that are often used in empirical analysis. Furthermore it is the only algorithm that gives the opportunity to 
mask continuous and discrete variables in one step. This can be seen as a special advantage, because real data 
often consist of both types of variables.  
 
In this report the algorithm and its extension in order to integrate partial masks is described and the results of 
tests on artificial and real data are discussed. The emphasis of this part of the report lies on the practical 
applicability of the algorithm to real data sets 
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This report is organised as follows. In section 2, criteria necessary for applying anonymisation methods in 
statistical agencies are described. Section 3 gives a detailed description of the algorithm and the extensions 
made. Empirical tests are shown in section 4. These allow some investigations into the properties of the algorithm 
in terms of  analytical validity, level of protection and practical applicability.  
 
2. Criteria for testing the usefulness of the algorithm 
 
In order to examine the usefulness of a statistical disclosure method one has to consider three main aspects: 
analytical validity of the protected data, level of protection and practical applicability to real life data. 
 
The first aspect “analytical validity” has often been discussed under the aspect which properties of the original 
data have to be preserved while applying statistical disclosure control methods. A review of the literature shows 
that it seems to be necessary to preserve the possibility to obtain unbiased or at least consistent estimates of 
central sample statistics for disseminating “useful” scientific use files, because empirical, sociological, or 
economic studies usually evaluate causal hypothesis by multivariate statistics or econometric analysis (see e.g. 
Brand 2000, Kim 1986, 1990, McGuckin/Nguyen 1990, McGuckin 1993, Winkler 1998). Estimates for these 
models are usually conducted on the basis of the unweighted sample. Hence it is assumed that the disseminated 
dataset contains no weights or similar information about the sample design.  
 
Central sample statistics needed for applying most multivariate methods are the sample means and the sample 
covariance of the masked data. It should be possible to derive consistent estimates for the true means and 
covariance in terms of the masked variables in order to ensure that standard-techniques, especially OLS-
regression-estimates, can be applied to the anonymised data. For those potential users should of the data using 
standard statistical software packages, it is very desirable that these central statistics can be obtained without 
correcting calculation formulas.  
For examining analytical usefulness one has furthermore to decide whether the descriptive statistics of the 
original sample should be replicated exactly by the disseminated data set or whether it is sufficient to preserve 
them only in terms of expected values. In the literature it is often mentioned that values calculated for sample 
statistics of the anonymised data should be close to those of the original data to obtain similar results 
(McGuckin/Nguyen 1990). Furthermore it is desirable to preserve at least the univariate distributions because of 
their usefulness for a general description of the data and the deduction of analytical models. 
 
Hence in this contribution the following aspects of analytical validity are considered in terms of similarity of:  
 
• means and standard-deviations 
• univariate distributions 
• correlations and  
• multivariate distribution of all variables . 
 
This setting stands in line with the criterions used in the literature (see e.g. Kim 1986, 1990, Domingo-
Ferrer/Torra 2001, Domingo-Ferrer/Mateo-Sanz 2001). Nevertheless the criteria chosen are not the only ones 
that can be relevant for anonymising real data. Other aspects may be the third and fourth moments of the 
multivariate distributions or preserving the conditional distributions of some of the variables while other variables 
are fixed. 
  
The second aspect that has to be considered is whether the level of protection achieved is sufficient. The level of 
protection can be measured in different ways: First, on statistics that base on the number of unique records1, and 
second on statistics for the number of true matches. The  latter approach has to be applied if the data are masked 
by adding noise, because in this approach it is not intended to reduce the number of unique records. Instead the 
records will be modified in a way that combining them with additional information will not lead to a re-
identification. For applying this method, it has to be defined first which matches are considered “true” and which 
matching procedures will be used (Probabilistic matching or distance based matching, see e.g. Domingo-
Ferrer/Torra 2002).  
 
                                                 
1 A record is unique, if it is the only one, which has the combination of values for the variables taken into account. 
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A detailed analysis of the level of protection is not intended here. Nevertheless, Sullivan’s algorithm incorporates 
a distance based criterion for sufficiency of masking. A simple distance based matching algorithm is used that is 
integrated in the masking procedure. Subsequently, the vector of distances between every masked record and all 
original records ( im ) is calculated. It has the typical element: itditit ddm 1−Σ= , where itd  denotes the vector of 
differences between  records i and t: *

tiit zzd −= , dΣ  the covariance-matrix of the distance-vectors, and iz  
the vector of values for record i and *

iz the vector of masked values for the i-th record (Sullivan 1989). The 
criterion chosen for sufficiency is that iim  is not one of the two smallest distances in im . Otherwise the mask 
will be repeated (Sullivan 1989, p.70).  
Other criteria for sufficiency of the mask, e.g. absolute distances, could be chosen as well. Nevertheless, for 
practical reasons this criterion is fixed in the algorithm. 
 
Note, that calculating this distance criterion is very time consuming because the number of calculations needed 
increases quadratically with the number of records. Hence application of this check seriously affects the number 
of records that can efficiently be masked on a personal computer. 
 
The third aspect relevant for the work in statistical agencies is whether practical applications can be performed in 
a reasonable amount of time and whether they need expert knowledge about the data and the Statistical 
disclosure control methods used. Whether or not statisticians, who are not statistical disclosure control experts, 
would be able in practice to use a certain masking algorithm may depend on the following issues: the number of 
parameters necessary for applying the algorithm, stability of the algorithm if unusual parameter values are chosen 
and/or in situations where data are not well prepared or not prepared properly. Complex data manipulations, 
which cannot be standardised, and extensive parameter specifications are time-consuming and require 
experienced users. Application of a method that requires a lot of parameters to be chosen, or is not very robust, 
may lead to higher costs than a - maybe less optimal - method that can be applied easily.  
 
3. Description of the algorithm suggested by Sullivan 
 
In this section an overview over the main methods of masking by adding noise is given. At first simple addition of 
random noise is described. On this basis the approach proposed by Sullivan 
(Sullivan 1989, Sullivan/Fuller 1989, 1990, Fuller 1993) is discussed.  

3.1 Masking by Noise Addition: General Idea 
 
Masking by adding noise was first tested extensively by Spruill (1983). The basic assumption is, that the 
observed values are realisations of continuous variables: ),(~ 2

jj xxjx σµ  j = 1, ..., p. Adding noise means 

that the vector jx is replaced by a vector jz : jjj xz ε+= , where ),0(~ 2
j

Nj εσε  denotes usually normal 

distributed errors with 0),( =ltCov εε  for all lt ≠ (white noise) generated independently from the original 
variables. Using matrices, this can be written as: 
 

ΕXZ +=  
 
with ),(~ ΣµX , ),(~ ΕΣ0Ε N  and Z denoting the matrix of perturbed values: ),(~ ZΣµZ , with 

ΕZ ΣΣΣ += .  
Usually it is assumed in the literature that variances of the jε  are proportional to those of the original variables 

(Spruill 1983, Tendick 1988, Tendick 1991) : 22
jj xz ασσ =  with 0>α . The parameter α denotes a positive 

constant used for varying the "amount of noise". Error variances proportional to the variance of the corresponding 
variable ensure that the relative error is identical for all variables. Furthermore, it is often implicitly assumed that 
the errors generated for different variables are independent, because the variables are described isolated in 
literature (Tendick 1991). Under these conditions we obtain for the masked data:  
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.0,),,,diag( 222
21

>+= ασσσα
pxxx ΛΣΣZ  

 
This method leads to useful results if relatively small errors are used (Spruill 1983) due to the characteristics of 
the error-distribution. Obviously, the sample means of the masked data are unbiased estimators for the 
expectancy values of the original variables due to the error-structure chosen; nevertheless this is not true for the 
variances and correlations, because the variances are inflated by factor (1+α). This implies that the sample 
variances of the masked data are asymptotically biased estimators for the variances of the original data.  
 
It has therefore been suggested to generate an error matrix *Ε  under the restriction ΣΣ *Ε α=  (correlated 
noise), which implies ΣΣZ )1( α+= . In this approach all elements of the covariance matrix of the perturbed 
data differ from those of the original data by factor: (1+α). Hence correlations of the original data can be 
estimated asymptotically unbiased by the sample correlations of the masked data (see e.g. Kim 1986, 1990). Kim 
(1990) shows that expected values and covariances of subpopulations can be estimated consistent as long as α 
is known, too. Furthermore it is possible to obtain consistent estimates of these parameters when only some of 
the variables used are masked (partial masks, see Kim (1990). These findings illustrate a general advantage of 
this method: Consistent estimates for several important statistics can be achieved as long as the value of 
parameter α is known. This means identical results can be achieved on the average, numerical equivalence of 
every estimate is not guaranteed. 
 
A general disadvantage that can not be adjusted by 'external' information about the masking procedure is that the 
distributions of the masked variables can not be determined as long as the variables are not normal distributed. 
The reason for this is that the distribution of the sum of a normal distributed variable (the error-term added) and a 
not normal distributed variable is not known in general. 
 
Although simple masking by adding correlated noise has some pleasant properties for analysis, it is usually not 
used due to its very low level of protection (see e.g. Kim/Winkler 1995, 1997, 2001, Tendick 1988, Tendick 1991). 
Therefore it is primarily a reference framework for studying general problems of adding noise to continuous 
variables. 
 
Some modifications of the approach are discussed in the literature. The one most often referred to it the one 
proposed by Kim (1986). This algorithm is based on combining noise addition with linear transformations. The 
algorithm allows consistent estimates of means, standard-deviations, and correlations and regression analysis for 
the whole sample and non-random subsamples. Nevertheless, the univariate distributions are not maintained and 
even the range cannot be preserved. Hence a different approach proposed by Sullivan and Fuller (Sullivan 1989, 
Sullivan/Fuller 1989, 1990, Fuller 1993) will be discussed in the following section. 
 

3.2 Masking by  Noise Addition and Non-linear Transformations 
 
Sullivan (1989) proposes an algorithm that combines masking by noise addition with non-linear transformations. 
The transformations allow for application to discrete variables and yield preservation of the univariate 
distributions. 
  
The algorithm proposed by Sullivan consists of several steps (Sullivan/Fuller 1989, Fuller 1993): 
 
1. Calculate the empirical distribution function for every variable, 
2. Smooth the empirical distribution function, 
3. Convert the smoothed empirical distribution function into a uniform random variable and this into a standard 

normal random variable, 
4. Add noise to the standard normal variable, 
5. Back-transformation to values of the distribution function, 
6. Back-transformation to the original scale. 
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During the application of the algorithm a distance criterion is used. It assures that the distance between the 
masked variables obtained in step four and its "standard normal" counterpart is not one of the two smallest 
distances. The properties of this more complicated algorithm are determined by the application of all steps. 
Therefore they will be described in this section in more detail. 
 
Steps 1 and 2 contain different transformations for continuous and discrete variables. For a continuous variable X 
the empirical distribution is calculated in step 1. In step 2, this distribution is transformed to the so called 
smoothed empirical distribution Sullivan (1989). Therefore the midpoints between the values iX  will be used as 
domain limits: 
 

2/)( 1−−= iii XXx  for all  mi ,,1 Λ=  , 
 
with 210 2 XXX −=  and 11 2 −+ −= mmm XXX . Within these classes the smoothed empirical distribution is 
calculated: 

)(
)(ˆ)(ˆ

)(ˆ)( 1
1

1
1 −

−

−
− −

−
−

+= i
ii

ii
ix xz

xx
xFxF

xFzF   for ],( 1 ii xxz −∈  , 

where )(ˆ
ixF  denotes the values of the empirical distribution function at the limits. This equation is calculated 

for every value of X: )( ixi XFp = . These are mapped into standard normal values by applying the quantile 
function of the standard normal distribution function (step 3):  )(1

ii pZ −Φ= . 
 
These transformations are a standardisation for normal distributed variables. Hence correlations of the 
transformed variables are nearly identical to those of the original variables as long as the variables are jointly 
normal. If the observed variables are not normally distributed the correlations of the transformed variables differ 
substantially. The amount of this divergence depends on the differences between the empirical distribution of 
standardised values and the standard normal distribution. 
 
In order to transform a discrete variable with k possible outcomes, the variable is first split in k-1 Bernoulli 
variables (Sullivan/Fuller 1990). Second the conditional covariance matrix of all Bernoulli-variables in the data set, 
given the continuous variables ( ccddm . ) is calculated: 

cdcccdddccdd mmmmm 1
. ' −−=  , 

 
where ccm  denotes the covariance matrix of the continuous  variables, ddm  the covariance matrix of the binary 
variables and cdm  the matrix of covariances between continuous and binary variables. 
 
Third a matrix of standard normal random numbers dcF  is generated, with column vector dctf : 

ctdccddctcccccddct emZLmmf ,
2/1
.

21' += −  , 
where ctZ  denotes the vector of transformed continuous variables stemming from observation t, 

)diag(2
cccc mL =  a matrix that has the sample variances on the diagonal and all off-diagonal elements zero 

and ctde ,  a vector of standard normal random numbers.  
Although the dctf  have nearly the same correlations as the original Bernoulli variables they do not depend on 
their true values. To link the original values of the Bernoulli variables with dctf  further transformations are 
needed. Therefore the values of the distribution function are determined )( ,, jdctjdct fg Φ=  for all 

dpj ,,1 Λ= . 
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The jdctg ,  are realisations of uniform random variables. Nevertheless they do not depend on the Bernoulli 
variables either. Hence the random variable jdcth ,  is generated that depends on jdctg ,  and the original variable 

jdtx , : 
 





=−−
=−

=
1if)1(1

0f)1(

,,

,,
,

jdtjdtcoj

jdtojjdtc
jdt xgp

xipg
h  dpj ,,1 Κ=   , 

where ojp  denotes the mean of the j-th Bernoulli-variable. In step 3 normalised ranks jdnjd RR ,,1 ,Λ  are 
assigned starting with the smallest value of jdth , :  

n
R

R jdt
jdt

5.0~ ,
,

−
=  . 

These are transformed in standard normal variables using the quantile function: )~( ,
1

, jdtjdt RZ −Φ= . 
Combining these with the transformed continuous variables leads to the vector of standard normal variables for 
every observation: )''( dtctt ZZZ = . 
 
In the fourth step of the algorithm the transformed variables tZ are masked by adding noise. This mask is in 
principle identical to the simple mask described in section 3.1. Let Z denote the matrix of transformed standard 
normal variables with row vectors tZ and the matrix of errors ),0(~*

ZZMNU . Then the matrix of masked 
variables is defined as: 

ZZUTZUZZ α+=+= **    for  α > 0, 
 
where ),0(~ ppINU  and ZZT  denotes a decomposition of the correlation matrix of the transformed data: 

ZZZZZZ PTT =' . Since the elements of Z and *U  are normally distributed, the masked values *
tZ are normal: 

),0(~ **
*

ZZt MNZ , with ZZZZ MM )1(** α+= .  
 
In this step of the algorithm partial masks can be integrated easily by setting all errors U  for the variables that 
should not be masked to zero. Hence the “masked values” *Z  are identical to the transformed original values Z  
for those variables that are not masked. The same idea can be used if some observations should not be masked. 
This way of including partial masks leads to the covariance matrix:  












+
++

=
ooom

momm

ZZZZ

ZZZZ
ZZ MM

MM
M

α
αα

1
1)1(

**  , 

 
where mZ denotes the matrix of variables included in the mask and oZ denotes the matrix of variables that 
should not b masked2.  
 
Subsequently, for any masked observation a vector of Mahalanobis-distances between the masked  
and all original observations is calculated (see section 2) The criterion chosen for sufficiency is that the distance 
between the original record and it’s masked counterpart is not one of the two smallest distances. Otherwise the 
mask will be repeated.  
 
For manipulating the errors two subroutines are proposed: If the error is “slightly” to small, this means if the 
distance of the true pair is the second smallest and if the value of the distance is larger than a predetermined 
value the errors will be multiplied by a constant. Otherwise the error will be generated completely new. 
 

                                                 
2 An alternative for integrating partial masks is using the GDAP-Method of Muralidhar, Sarsa and Sarathy (1999). 



Stand: 29.08.2002 
 

 7

In steps 5 and 6 of the algorithm, the masked values are transformed back to the original scale. For each variable 
*
jZ , pj ,,1 Κ=  a vector of normalised ranks *

jD  is calculated. For this purpose a vector of ranks *
jR  is 

calculated with elements of *
jZ  in ascending order and divided by the number of observations n.  

 
This 'empirical distribution' is modified for back transformation, because its values depend solely on the sample 
size. Hence the errors are standardised: 
 

1
1

1 *
1

* 2

−

∑
−=

=
+

n

u
n

u
u

tj
n
ttj

tj  , 

 
mapped into the domain (0;1) and added to the ranks: 

tj
tjtjtj

tj n
R

n
uR

D ξ
ϕ

−=
−

=
+ **

* )(
  , nt ,,1 Κ=  , 

where )(•ϕ denotes the function that maps the +
tju  to values between zero and one. A good choice for )(•ϕ  is 

the standard normal distribution, because +
tju  is normally distributed which leads to a uniform distributed tjξ . If 

the errors for some variables are set to zero (partial masks) +
tju  is zero. Hence the normalised ranks of this 

“masked variables” are identical to the ranks respectively the smoothed empirical distribution of the original 
variables.  
 
The final back transformation differs depending on whether  a variable is continuous or discrete. 
For continuous variables the inverse of the smoothed empirical distribution XF is used: 
 

)(
)(ˆ

)(ˆ
,1.

,1

,1
*

,1
*

jiji
ji

jitj
jictj xx

xF

xFD
xX −

−

−
− −

−
+=  ,  for  )](ˆ),(ˆ( ,,1

*
jijitj xFxFD −∈  . 

 
For back-transforming the binary variables the corresponding transformation equation is inverted: 
 







−∈
−∈

=
)1,1(if1
)1,0(if0

*

*
*

ojtj

ojtj
dtj pD

pD
X  for nt ,,1 Κ=   dpj ,,1 Κ=  . 

 
This back transformations ensure that the univariate distributions will be preserved approximately. Therefore 
sample means and variances are similar to those of the original data.  
 
The correlations, however, differ due to numerical differences and/or not jointly normally distributed original 
variables and if partial masks are performed. Furthermore the correlations between X  and *X  differ between 
the variables, this means that the "relative amount of noise" differs. To adjust for these drawbacks Sullivan (1989, 
pp. 76) proposes two iterations. First, the cross correlations between the variables and their masked counterparts 
are adjusted to a robust average. Second, differences between the elements of the correlation matrices are 
minimised. 
 
Because expectancy values of original and masked variables are identical, adjusting cross correlations is based 
on: 
 

tjxxtj
ji

X ξρ += *
*  , 
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where *
ji xx

ρ  denotes the correlation between iX  and *
jX  , and jξ  an error term independent of iX , 

),0(~ 2
jj ξσξ , 0)( =jiXCov ξ  with )1( *

22

jijj xxX ρσσ ξ −= . 

This leads to:  
 

2

2

1*

i

j

ji
X

xx σ

σ
ρ ξ

−=  . 

 
It is reasonable to assume that the correlation between the original variables and their masked counterparts is 
positive, this means 22

jj Xσσ ξ < . Therefore the correlation increases with  decreasing 2
jξσ . Hence a 

modification of the error terms can be used for adjusting the correlations:  
The target correlation chosen is a robust  average of the correlations ρ  estimated by the means of the cross-
correlations not using  their extreme values.  
 
For determining the amount of variation of variances a simple linear approximation is used. A transformation 
matrix aaB  is defined with typical element:  







 =
+−

−
=

else0

if
)(5.01

1
*

ji
rb

iji XXaaii ρ
ρ

  . 

 
and new standard normal masked values are calculated by: aattt BuZZ ** += . 
 
These are transformed back to the original scale. This adjustment is done iterative until the observed cross 
correlations differ from the desired cross correlations less than a specified amount or until a predetermined 
number of iterations is exceeded. 
 
As mentioned above correlations, of the masked and the original data differ usually. Sullivan therefore proposes 
(1989, pp. 78) a second iterative adjustment in order to make the off diagonal elements of the correlation matrices 
nearly identical. The basic idea is again to use a linear transformation for adjusting the error terms. Sullivan 
(1989, p. 78) proposes to modify them subsequently, starting with the variable for which the sum of the 
differences between the correlations in the original data and the masked data is maximal. 
  
For modifying the errors, a linear combination *

1H of the transformed original variable chosen ( 1Z ) and the 
masked values of the other variables ( *

jZ ) is calculated: 
 

bZZbZbH jj
p
i '*

1101
+

=
+ =∑+=  

with 10 1 bb −= . The system of equations defining the desired properties is κ=),( 1
*
1 XGr  and 

*
11 ,

*
1

*
1 ),(

xx
rXGr = , where *

1G  denotes the back transformed variable corresponding to *
1H  and κ the 

arithmetic mean of the cross correlations between 1X  and the masked variables **
2 ,, pXX Κ : 

*
1

2)1/(1
jXX

p
j rp =Σ−=κ . 

 
The coefficients are calculated by solving: 
 

++ = ρbZ '  , 
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where +Σ
Z

 denotes the correlation matrix of ),,,( **
21 pZZZZ Κ=+  and ),(

121 ,,
'

pXXrXXr Κκρ =+ . The 

newly calculated values of +
1H  are transformed back to the original scale by steps 5 and 6 of the algorithm. This 

approximation can be repeated iteratively until a convergence criterion for the correlations is achieved or a 
predetermined number of iterations is exceeded. 
 
The algorithm described above allows masking of binary and continuous variables. For discrete variables with 
more than two categories a final back transformation has to be applied. Let *

tZ  be a vector defined as  
 







−=Σ−
=

= −
= 1,,2for1

1for
**1

1

*
1*

kiXZ
iX

Z
dtjtj

i
i

dt
tj Κ

  . 

 
Then the elements of the masked variable *

dX  are defined as iX dt =* , if 1* =tiZ . 
 
So, the algorithm proposed by Sullivan (1989), (Fuller 1993) combines transformations with adding noise. The 
transformations chosen assure that the univariate distributions are preserved approximately. They are not linear 
and quite complex in comparison to the basic idea and the ones used by Kim (1986, 1990)3. Additionally iterative 
procedures are used for correcting differences in correlations induced by transformations and mask. Due to these 
corrections it is not guaranteed that all variables have the same level of protection. 
 

3.3 Properties of the algorithm: Theoretical considerations for analytical usefulness  
 
In order to investigate into the properties of the algorithm it is useful to analyse whether the masked variables 
allow an unbiased estimate of the first two moments of the unmasked variables as long as only binary discrete 
variables are masked. In (Brand 2000) it is shown that the sample means of the masked data are unbiased 
estimates for the expected values of the original data. Furthermore, sample variances of masked binary variables 
are unbiased estimates for the variances of the original binary variables. This is a very interesting property of the 
algorithm, because most other algorithms proposed for masking through noise addition can only be applied to the 
continuous variables.  
 
Nevertheless the variances of continuous variables increase (Brand 2000). The increase is higher with increasing 
sample size and larger differences between the ordered observed values in the original data. This result shows 
that the sample variance calculated by the masked variables is a biased estimate for the sample variance of the 
original data. The variation in the original data is overestimated due to the additional variation within the 'classes'  
- this means the differences between ranked observed values - used for transformation.  
 
Due to the complex structure of the algorithm a more detailed analysis of the properties is not useful. The main 
reason for this is that the distribution of the errors on the original scale can not be obtained explicitly. Therefore, 
only general inferences for regression estimates are possible on the basis of an errors-in-variables-model (Fuller 
1993). Additionally, analysis of non random subsamples leads usually to misleading results, because correlations 
of subsamples are not preserved. 
 
Furthermore linear and non linear dependencies on the level of records can not be fully preserved. Hence 
relevant variables for analysis that base on combinations of values (e.g. binary variables, indices) have to be 
derived before the algorithm is applied. This is due to the fact that the algorithm preserves only the univariate 
distributions and the correlations. All other properties of the data may be distorted by the algorithm (see Brand 
2000). Hence regression analysis based on any variables constructed by transformations of the masked variables 
may be misleading.  
 

                                                 
3 For a comparison see e.g. Brand (2002). 
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Summarising, the algorithm proposed by Sullivan (Sullivan 1989, Sullivan/Fuller 1989, Fuller 1993) can be 
characterised as a complex method that combines adding noise with non-linear transformations. Univariate 
distributions of the variables are maintained approximately. Variances of continuous variables, however, increase 
in small samples due to the structure of the transformations. The algorithm ensures that the correlation structure 
of the original variables is preserved by iterative adjustment procedures.  
 
4. Empirical Results 

4.1 Implementation of the algorithm 
 
The algorithm described above has been implemented as a GAUSS-Routine. The GAUSS Mathematical and 
Statistical System is a flexible, fast matrix programming language designed for computationally intensive tasks. 
GAUSS routines may be integrated in other programs by an interface. The current implementation allows partial 
masks for continuous variables as long as no binary variables are planned to be masked. Partial masks for binary 
variables are possible as long as all continuous variables will be masked.  
 
Tests were conducted on the basis of three different data sets. Firstly, some tests were performed on simulated 
correlated normal distributed data and no binary variables added. Secondly, tests were undertaken with the 
simulated data and binary variables added. The binary variables are clearly correlated with the continuous 
variables. A third test data set was used that has properties similar to real business microdata surveys. Business 
data are usually characterised by extremely skewed distributions, not very high correlated with the exception of 
the variables that depend strongly on the size of the unit. 
  
Table 1: Parameters: Specification of interfaces for the current version:  
 

Parameter Description 
Multiplier for variances  (α) Relative amount of noise;  real value > 0 
Constant for sufficiency criterion 
additionally used to difference 
criterion 

Absolute value of minimum difference, real value > 0 

Constant for multiplying noise, if 
completely new generation is 
not required 

Constant for multiplying errors slightly too small, real value > 0 

Tolerance criterion for adjusting 
cross correlations 

maximum value for differences in cross correlations between the 
variables and their masked counterparts, real value between zero 
and one 

Tolerance criterion for adjusting 
correlations of original and 
masked data  

maximum value for differences between the correlations of 
original and masked variables”, real value between zero and one 

 
To apply the algorithm, at least five parameters have to be set (table 1). The multiplier for the variances of the 
transformed variables, the constant for multiplying the errors and the distance which determines whether errors 
will be generated completely new are necessary for masking itself. They determine the details of masking. Hence, 
they influence the adjustment routines and the number of not sufficiently masked observations. The tolerance for 
the adjusting cross-correlations between the original variables and their masked counterpart determine the 
maximum differences in the amount of noise on the level of the original variables. This leads to a “similar level of 
protection” for all variables. The last parameter, the tolerance level for adjusting correlations of original and 
masked data, determines the maximum difference between the correlation-matrices of original and masked data. 
 
Some examples for application of the algorithm proposed by Sullivan can be found in the literature (Sullivan 1989, 
Sullivan/Fuller 1990, Fuller 1993, Brand 2000, 2002, Brand/Bender/Kohaut 1999) that illustrate the properties. 
These examples confirm that sample means and variances are approximately preserved for different distributions 
of the original variables. Differences in the correlations occur if the number of iterations in the procedures 
adjusting the correlations is limited to a few or if the distributions of the original variables are extremely skewed. It 
should be stressed that estimates in subpopulations are biased due to the structure of transformations and an 
explicit adjustment formula is not known (Sullivan 1989, Sullivan/Fuller 1990). Furthermore, for Sullivan's 



Stand: 29.08.2002 
 

 11

algorithm it can be shown that regression analysis with limited dependent variables can be misleading, because 
the multivariate distribution is not preserved (Brand 2000). The same is true for all methods discussed above if 
likelihood estimations require an explicit determination of the error distribution.  

4.2 Results for test data 
In the previous sections the masking algorithm suggested by Sullivan has been described and its analytical 
properties were discussed. In this section, numerical examples are presented and the results are compared with 
the ones found in literature. For this purpose, a normally distributed test data set and test data that base on real 
data were used. These test data is one of the datasets  chosen for comparing the different perturbation methods 
tested in the CASC-project, the so called “Tarragona” data4. These data are stemming from 834 companies of the 
Tarragona area in Spain. 
 
 

4.2.1 Results for Simulated Data 
Firstly, normally distributed test data with 500 records and six columns were generated for illustrating the 
technical applicability of the algorithm. The descriptive statistics of these data can be found in table A1 and table 
A2 (means, standard-deviations, correlations). The algorithm was applied to the whole data set, as well as to 
subsamples of 250 records with 10 replications, each with a relative amount of noise used for masking the 
standard normal data (α) of 0.5, a minimum distance for using the simplified modification of errors of 0.5, and a 
multiplier for the errors of 0.5. 
 
The results can be found in table A3 – A6. Table A3 shows that the algorithm works properly, if it is applied to 
these data in the sense that means and standard-deviations are similar and correlations are preserved with 
differences lower than the predetermined amount (0.01). According to the internal distance criterion about 19% of 
250 records respectively 16% of 500 records have not been sufficiently masked.  
Table A4 gives the results if variable six is not masked, this means if partial masks are applied to variables one to 
six. The results show that masks can be performed successfully with the same parameter values than in the first 
experiment. The number of not sufficiently masked records increases to 25% if 250 records are used and to 20% 
for the whole test data. Other experiments – not reported in the tables – indicate that the masking algorithm fails if 
more variables are excluded from the mask, because the correlation adjustment procedures fail. 
  
As explained above, successfully masking of binary variables requires that they are clearly correlated with the 
continuous variables. Hence, the binary variable generated for testing this part of the algorithm is correlated with 
the continuous variables (table A1). The results for 250 and 500 records show that the algorithm works 
successfully in most replications (Table A5). When including binary variables, it seems that the algorithm works 
more stable with relatively large maximum differences allowed after adjusting cross correlations and correlations. 
This is due to the indirect inclusion of the variables in the algorithm. 
 
If an additional continuous variable in included (table A6) that has only small variation and is highly correlated 
with the binary variable, adjustment of correlations fails most often if a maximum tolerances levels of 0.01 is 
chosen. If tolerance levels are set to higher values (0.05 for both adjustment procedures) the algorithm works 
properly. According to the internal distance criterion the number of not sufficiently masked records increases to 
25%. 
 
The results shown above stand in line with the findings in Sullivan (1989) and Brand (2000) indicating that the 
algorithm works properly for synthetic data as long as the binary variables are correlated with the continuous 
ones.  
 
Tests with synthetic data that are characterised by extremely skewed distributions and high proportions of the 
records with zero values are shown in Brand (2002). Here, it is shown that the algorithm is applicable to these 
data. The differences in the univariate distributions especially in the standard-deviations are higher than for the 
standard normal data. Furthermore, minima, maxima and the proportion of values close to zero are not too far 
from the values in the original data due to the transformations chosen. Adjustment of cross correlations 
                                                 
4 For a detailed description see Domingo-Ferrer/Mateo-Sanz 1998. 
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terminated at its limit, and the iterations used for equalising the correlation matrices were terminated at their limit 
for one of the variables after being successfully used for four other variables. Although the distributions of the 
original variables are extremely skewed and therefore the transformed standard normal variables have a 
correlation structure that is different from the original data the adjustment procedures worked properly.  
 
For investigating systematically into the properties of the algorithm if real business data are used tests with the so 
called “Tarragona”-data were undertaken. These data are one of the data sets chosen for comparing the different 
SDC-Methods in the CASC-project. The variables included in this data set are shown in table A7. They are typical 
for business surveys in the sense that the distributions are skewed, the cover a wide range and the distributions 
are highly skewed. 
 
The algorithm failed, when it wass applied to the whole data set. Thus, the data had to be manipulated before the 
algorithm was applied. One possible choice of modifying the data would be to apply those transformations usual 
in the process of data analysis (tables A9 – A11). Another option would be to split the data into more 
homogeneous subsamples, e.g. by size (see e.g. Brand 2000, Brand/Bender/Kohaut 1999).  
 
In our experiment, we first choose transformations based on some simple considerations. With the prepared data 
set (table A12) the algorithm proposed by Sullivan gave the following results: In ten replications of the experiment 
the algorithm failed four times, if the whole data set was to be masked, and three times, if the transformed 
variable six was not taken into account. At least in one of the cases the algorithm failed, when the maximum 
difference between the correlations of the original and the masked data exceeded 0.45. These results are not 
satisfactorily. An inspection of the detailed results shows that for variables X1 and X3 adjustment of the 
correlation failed for Variable X1 often. The reason for this is that the underlying assumptions concerning the 
correlation of variables are not fulfilled. For both variables, the calculated linear combinations do not lead to a 
sufficient increase in similarity between the correlation matrices of the original and the masked data.  
Unfortunately, we are unable to give a clear mathematical reason for this.  
 
In a second experiment, we chose another transformation: First, the natural logarithm of X1 was chosen in order 
to increase the variation of this variable. Variable X3 was modified in the way that the ratio of operating profit to 
net profit was substituted by the ratio to sales (table A13). The reason for this was that operating profit and net 
profit are economically less dependent than operating profit and sales. The descriptive statistics of this data set 
can be found in tables A14 – A15.   
 
For these data, masking experiments were conducted for a full mask and a partial mask in which variable X6 was 
excluded. The results are presented by table A16. With respect to preservation of means, standard-deviations 
and correlations the algorithm worked properly although the maximum of the differences for the standard 
deviations wass quite high. Adjustment of cross-correlation worked properly while adjusting correlations between 
the original variables and their masked counterpart failed very often. For this data set about 11% of the records 
were not sufficiently masked on the average. This proportion increased to 16% if partial masking was used in 
which variable X6 was excluded. Compared to the former experiments described above, the number of not 
sufficiently masked records was significantly lower for the “Tarragona-data”. This result indicates that for real data 
the level of protection differs substantially from the one of the synthetic data.  
 
The proportion of not sufficiently masked records is somewhat higher than the proportion of insufficiently masked 
records that is usually used as threshold for sufficient protection of a whole data set. Nevertheless, it has to be 
kept in mind that the results presented are based on a comparison of original and masked records. For 
investigating into the number of records that are insufficiently masked in a real data set, experiments with 
additional information stemming from external data sets would be necessary. A final evaluation of the level of 
protection is beyond the scope of this report. 
 

4.2.2 Further Aspects of Practical Applicability in Statistical Offices 
 
For applying the method to real data some further aspects have to be taken into account that have an impact on 
the practical applicability of an algorithm in a statistical agency with a reasonable amount of time and manpower. 
The first aspect is: does it require expert knowledge on the data and on statistical disclosure control methods 
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used to apply the algorithm? The second aspect relates to the computing time: is it possible to apply the algorithm 
to huge real life data sets in reasonable time? 
 
For practical applicability reasons all tests were performed with a fixed data set. Only the tolerance levels for the 
differences in correlations were varied. The results show  that variations of these parameters influence the results 
of the algorithm. The applications lead to sufficient results more often if the tolerances are set higher. Additional 
test results not shown here indicate that extreme parameter values for the mask especially for the relative amount 
of noise can lead to abortion of the algorithm for normal distributed test data too.  
 
The results for the “Tarragona-data” show that small modifications in preparing the data can lead to substantially 
different results for masking. This modifications have to be done manually because no clear “ratios” or 
benchmarks can be determined theoretically. Hence detailed knowledge of the data and the algorithm is 
necessary for an successful application. Furthermore the meaning of the parameters is not always clear; the 
parameter values chosen determine the results indirectly, because applying the adjustment routines will lead to 
modifications in the errors and hence the level of protection chosen for the masking procedure. Hence applying 
the routine requires an experienced user who has applied the algorithm several times before generating the “final” 
mask. 
 
The second aspect is the computation time needed. For the modified Tarragona-Data computation computing 
time usage is about 14 minutes for one replication on an Personal Computer (Pentium II, ca. 120 MB RAM). If the 
adjustment routines do not lead to an useful result in a small number of iterations the computation time increases 
for the “Tarragona-data” by a few minutes. If more records are used, computation time increases rapidly, because 
the number of calculations for determining the distances increases by factor n (n = number of observations) if one 
record is added to the data. Hence datasets with more than 1500 records cannot be masked in practice. Larger 
data sets must be split into groups before the masking algorithm is applied. 
 
To come to a conclusion, the algorithm proposed by Sullivan can be applied in practice to real and synthetic data. 
Partial masks can be performed too in a way that correlations between masked and unmasked variables are 
preserved. Nevertheless, it does not work stable if the underlying structure of the data incorporates strong 
dependencies between some variables or if the distributions are extremely skewed and cover a wide range. 
Hence the data have to be manipulated manually by statistical experts in advance. The algorithm is quite time-
consuming due to the internal distance criterion. This leads to an upper limit of ca. 1500 for the number of records 
that can be masked in one step. Therefore, larger datasets have to be split up in advance of masking them. 
 
5. Summary  
 
In this paper, we have been looking into masking through noise addition. A detailed description of the algorithm 
proposed by Sullivan is given, an extension in order to integrate partial masks is proposed and its applicability to 
real data sets is examined. Criteria relevant for examining the applicability are analytical usefulness, level of 
protection and practical applicability. The latter aspects do not only include technical stability and computing time 
requirement. It has to be born in mind too, that complex data manipulations are required, which cannot be 
standardised. Also, it is not easy to understand the parameters to be chosen, thus setting parameters leads to 
time-consuming trial and error processes, and require experienced users. Thus, it is expected that an application 
of Sullivan’s algorithm is probably more ‘costly’ than using another (maybe less optimal) method, easier to be 
applied.  
 
Sullivan’s algorithm is characterised by a mixture of non-linear transformations and noise addition. The algorithm 
is of special interest, because it preserves univariate distributions and correlations of the data. Furthermore, it is 
the only algorithm that gives the opportunity to mask continuous and discrete variables on the basis of noise 
addition in one step. Nevertheless, variables necessary for analysis generally must be calculated in advance of 
masking the data (so they have to be known in advance of masking). Non-random subsamples of masked data 
are analytically valid only if the data was split into these groups before the algorithm was applied. 
 
The results of the empirical tests show that the algorithm can be applied in practice to real and synthetic data. 
Partial masks can be performed as well, in a way that correlations between masked and unmasked variables are 
maintained. Nevertheless the algorithm does not work stable when there are strong dependencies between some 
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variables or if the distributions are extremely skewed and cover a wide range. Hence, the data have to be 
prepared manually by statistical experts. Furthermore the parameters have no clear effect on the results, 
especially the parameters for adjusting the cross correlations. The algorithm is quite time-consuming due to the 
internal distance criterion. This leads to an upper limit of ca. 1500 for the number of records that can be masked 
in one step. Larger datasets have to be split up in advance of masking them.  
 
All in all, the results indicate that an algorithm as complex as the one proposed by Sullivan can only be applied by 
experts. Every application is very time-consuming and requires expert knowledge on the data and the algorithm. 
Especially for data sets that require complex data manipulations an application at statistical agencies is expected 
to be rather too expensive. Other routines, like microaggregation (see e.g. Domingo-Ferrer/Mateo-Sanz 2001) 
seem to be more promising in that case. Still, it is a very valuable framework that can be used as a reference for 
further research in the field of statistical disclosure methods.  
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Annex: Tables  
 
Table A1: Descriptive statistics of normal distributed test data (500 records) 
  

Variable Mean Standard 
deviation 

X1 20.83 11.84
X2 11.24 16.83
X3 13.34 41.31
X4 30.20 21.87
X5 49.91 3.243
X6 10.77 15.75
X7 45.04 2.301
B1 0.5180 0.5002
 

 
Table A2: Correlations of normal distributed test data (500 records) 
 
 X1 X2 X3 X4 X5 X6 X7 B1 

X1 1    
X2 0.7047 1   
X3 0.02368 0.02263 1   
X4 -0.09703 -0.08173 0.1909 1   
X5 -0.03850 -0.07756 0.1003 0.6936 1   
X6 -0.02899 0.04875 0.08803 0.2961 0.05274 1   
X7 -0.07573 -0.06918 0.1791 0.7964 0.6980 0.2523 1  
B1 -0.03693 -0.03667 0.06881 0.6500 0.5653 0.2019 0.8113 1 

 
 
Table A3: Normal distributed test data: Results for Sullivan’ Algorithm 

Variables: X1 – X6 
Multiplier for variances: 0.5, Constant for sufficiency criterion additionally used to difference criterion: 0.5, 
Constant for multiplying noise, if completely new generation is not required: 0.5, 
Tolerance criterion for adjusting cross correlations: 0.01, Tolerance criterion for adjusting correlations 
between original and masked data: 0.01 
Number of replications: 10  

 
Differences in means and standard deviations 250 records 500 records 
Maximum difference in absolute means 0.06 0.02 
Mean of differences in absolute means 0.003 0.001 
Maximum difference in standard deviations 0.70 0.59 
Mean of differences in standard deviations  0.21 0.14 
Maximum difference in correlations < 0.01 < 0.01 

  
250 records 500 records Number of not sufficiently 

masked records Mean Maximum Minimum Mean Maximum Minimum 
1. mask 77,0 93 65 119,2 135 107 
2. mask 48,1 54 42 81,2 92 71 
3. mask and adjustment 
of correlations 

48,1 
(19%) 

54 42 81,2 
(16%) 

92 71 
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Table A4: Normal distributed test data: Results for Sullivan’ Algorithm 
Variables X1 – X6, partial mask X6 excluded 
Multiplier for variances: 0.5, Constant for sufficiency criterion additionally used to difference criterion: 0.5, 
Constant for multiplying noise, if completely new generation is not required: 0.5, 
Tolerance criterion for adjusting cross correlations: 0.01, Tolerance criterion for adjusting correlations 
between original and masked data: 0.01 
Number of replications: 10  

 
Differences in means and standard deviations 250 records 500 records 
Maximum difference in means 0.02 0.02 
Mean of differences in means 0.004 0.001 
Maximum difference in standard deviations 0.68 0.52 
Mean of differences in standard deviations  0.14 0.09 
Maximum difference in correlations < 0.01 < 0.01 

 
 

250 records 500 records Number of not sufficiently 
masked records mean Maximum Minimum mean Maximum Minimum 
1. mask 116,0 127 105 154,3 167 139 
2. mask 63,3 70 57 99,8 108 86 
3. mask and adjustment 
of correlations 

63,3 
(25%) 

70 57 99,8 
(20%) 

108 86 

 
 
Table A5: Normal distributed test data: Results for Sullivan’ Algorithm 

Variables X1 – X6, B1 (one binary variable included) 
Multiplier for variances: 0.5, Constant for sufficiency criterion additionally used to difference criterion: 0.5, 
Constant for multiplying noise, if completely new generation is not required: 0.5, 
Tolerance criterion for adjusting cross correlations: 0.01, Tolerance criterion for adjusting correlations 
between original and masked data: 0.01 
Number of replications: 10  

 
Differences in means and standard deviations 250 records 500 records 
Maximum difference in means 0,05 0,04 
Mean of differences in means 0,001 0,002 
Maximum difference in standard deviations 0,46 0,43 
Mean of differences in standard deviations  0,13 0,08 
Maximum difference in correlations < 0,01 0,03 
Number of replications in which adjustment of cross 
correlations is terminated at 100 iterations  

2 1 

Number of replications in which adjustment of 
correlations is terminated at 1000 iterations  

0 1 

  
 

250 records 500 records Number of not sufficiently 
masked records mean Maximum Minimum Mean Maximum Minimum 
1. mask 100,0 108 93 154,3 167 139 
2. mask 57,5 63 63 99,8 108 86 
3. mask and adjustment 
of correlations 

57,5 
(23%) 

48 48 99,8 
(20%) 

108 86 

  
Table A6: Normal distributed test data: Results for Sullivan’ Algorithm 

Variables X1 – X7, B1 (one binary variable included), 250 records 
Multiplier for variances: 0.5, Constant for sufficiency criterion additionally used to difference criterion: 0.5, 
Constant for multiplying noise, if completely new generation is not required: 0.5 
Number of replications: 10  
 
 Adjusting Cross 

Correlations and 
Adjusting Cross 
Correlations with a 

Adjusting Cross 
Correlations and 
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Correlations with a 
tolerance of 0.01 

tolerance of 0.05 and 
Correlations with a 
tolerance  of 0.03 

Correlations with a 
tolerance of 0.05  

Maximum difference in means 0.04 0.05 0.05 
Mean of differences in means 0.002 0.001 0.0008 
Maximum difference in standard 
deviations 

0.35 0.43 0.42 

Mean of differences in standard deviations 0.09 0.09 0.09 
Maximum difference in correlations 0.06 0.43 < 0.05 
Number of replications in which 
adjustment of cross correlations is 
terminated at 100 iterations  

7 0 0 

Number of replications in which 
adjustment of correlations is terminated at 
1000 iterations  

5 3 0 

  
Adjusting Cross Correlations and 
Correlations with a tolerance of 
0.01 

Adjusting Cross Correlations with a 
tolerance of 0.05 and Correlations 
with a tolerance  of 0.03 

Adjusting Cross Correlations and 
Correlations with a tolerance of 
0.05  

Number of not 
sufficiently 
masked records 

Mean Maximum Minimum Mean Maximum Minimum Mean Maximum Minimum 
1. mask 121,1 132 111 117,7 128 106 117,5 124 114 
2. mask 61,5 70 54 61,4 63 57 62,1 67 54 
3. mask and 
adjustment of 
correlations 

61,5 
(25%) 

70 54 61,4 
(25%) 

63 57 62,1 
(25%) 

67 
 

54 

  
 
Table A7: Tarragona Data: Descriptive Statistics of selected variables  (Number of records: 834) 
 
 

 Mean Standard deviation 
Sales 546958.28 1155792.7
Labour Costs 74447.959 135407.60
Depreciation 10855.103 27193.581
Operating Profit 27622.765 88221.548
Financial Outcome -8366.2482 25690.361
Gross Profit 21243.484 80287.944
Net Profit 14133.801 56155.537
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Table A8: Tarragona Data: Correlations of selected variables 
 
 Sales Labour Costs Depreciation Operating 

Profit 
Financial 
Outcome 

Gross Profit Net Profit 

Sales 1       
Labour Costs 0.6494 1      
Depreciation 0.6227 0.5819 1     
Operating Profit 0.7435 0.5620 0.7361 1    
Financial 
Outcome 

-0.5197 -0.3803 -0.4883 -0.4406 1   

Gross Profit 0.6767 0.5156 0.6813 0.9441 -0.2049 1  
Net Profit 0.6504 0.4904 0.6621 0.9332 -0.2170 0.9799 1 
 
 
 
Table A9: Tarragona-Data: Description of variables 
 

X1 Labour costs divided by sales 
X2 Depreciation divided by net profit 
X3 Operating profit divided by net profit 
X4 Financial outcome divided by sales 
X5 Gross profit divided by operating profit 
X6 Net profit divided by gross profit 

 
 
Table A10: Tarragona Data: Descriptive Statistics of transformed data (Number of records: 826*) 
 

 Mean Standard 
deviation 

X1 0.2079 0.2411 
X2 4.099 61.16 
X3 5.935 58.28 
X4 -0.02632 0.1336 
X5 0.8451 5.438 
X6 0.7635 0.6952 

 
* The number of records decreases in comparison to the original data set due to not defined divisions. 
 
 
Table A11: Tarragona Data: Correlations of transformed data 

 
 X1 X2 X3 X4 X5 X6

X1 1  
X2 0.001764 1 
X3 0.04088 0.5557 1
X4 -0.08780 -0.007419 0.01576 1
X5 0.006259 -0.008023 -0.01094 -0.01891 1
X6 0.01087 -0.01085 -0.07738 -0.05589 -0.02345 1
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Table A12: Tarragona data: Results for Sullivan’ Algorithm 
Variables X1 – X6 
Multiplier for variances: 0.5, Constant for sufficiency criterion additionally used to difference criterion: 0.5, 
Constant for multiplying noise, if completely new generation is not required: 0.5 
Number of replications: 10 
 
 Full mask,  

Adjusting Cross 
Correlations with a 
tolerance of 0.05 and 
Correlations with a 
tolerance of 0.03 

Partial mask,  
Adjusting Cross Correlations with a 
tolerance of 0.05 and Correlations 
with a tolerance of 0.03 

Maximum difference in means 1,08 1,30 
Mean of differences in means 0,16 0,18 
Maximum difference in standard 
deviations 

23,16 23,37 

Mean of differences in standard deviations 3,38 3,72 
Maximum difference in correlations 0,47 0,47 
Number of replications in which 
adjustment of cross correlations is 
terminated at 100 iterations  

4 4 

Number of replications in which 
adjustment of correlations is terminated at 
1000 iterations  

4 3 

  
 

Full mask Partial mask Number of not sufficiently 
masked records Mean Maximum Minimum Mean Maximum Minimum 
1. mask 133,6 157 113 199,8 220 175 
2. mask 94,2 106 106 140,4 156 127 
3. mask and adjustment 
of correlations 

94,2 
(11%) 

84 84 140,4 
(17%) 

156 127 

 
Table A13: Tarragona-Data: Description of transformed variables 
 

X1* Natural logarithm of Labour costs divided by sales 
X2 Depreciation divided by net profit 
X3* Operating profit divided by sales 
X4 Financial outcome divided by sales 
X5 Gross profit divided by operating profit 
X6 Net profit divided by gross profit 

 
Table A14: Tarragona Data: Descriptive Statistics of transformed data (Number of records 818*) 
 

 Mean Standard 
deviation 

X1* -1.953 0.9429 
X2 4.172 61.52 
X3* 0.02720 0.2825 
X4 -0.02575 0.1335 
X5 0.8226 5.423 
X6 0.7636 0.6988 

 
* The number of records decreases in comparison to table 9 due to taking logarithms of variable X1 (records with an absolute 
value over 1,000,000 for variable X1* were excluded). 
 
Table A15: Tarragona Data: Correlations of transformed data 

 
 

 X1* X2 X3* X4 X5 X6 
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X1* 1   
X2 0.002207 1  
X3* -0.1626 0.006587 1  
X4 -0.09465 -0.007616 0.06827 1  
X5 0.01945 -0.007912 -0.006473 -0.01633 1  
X6 0.008331 -0.01065 -0.01132 -0.05488 -0.02271 1 
 

 
Table A16: Tarragona data: Results for Sullivan’ Algorithm 

Variables X1* – X6 
Multiplier for variances: 0.5, Constant for sufficiency criterion additionally used to difference criterion: 0.5, 
Constant for multiplying noise, if completely new generation is not required: 0.5 
Number of replications: 10 
 
 Full mask,  

Adjusting Cross 
Correlations with a 
tolerance of 0.05 and 
Correlations with a 
tolerance of 0.03 

Partial mask,  
Adjusting Cross Correlations with a 
tolerance of 0.05 and Correlations 
with a tolerance of 0.03 

Maximum difference in means 1,25 1,17 
Mean of differences in means 0,15 0,12 
Maximum difference in standard 
deviations 

23,94 24,37 

Mean of differences in standard deviations 3,48 2,77 
Maximum difference in correlations 0,03 0,03 
Number of replications in which 
adjustment of cross correlations is 
terminated at 100 iterations  

7 8 

Number of replications in which 
adjustment of correlations is terminated at 
1000 iterations  

0 0 

  
 

Full mask Partial mask Number of not sufficiently 
masked records Mean Maximum Minimum Mean Maximum Minimum 
1. mask 129,9 141 112 193,0 208 168 
2. mask 88,9 101 75 133,5 142 117 
3. mask and adjustment 
of correlations 

88,9 
(11%) 

101 75 133,5 
(16%) 

142 117 
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