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Abstract. Microaggregation is a masking procedure used for protecting
confidential data prior to their public release. This technique, that relies
on clustering and aggregation techniques, is solely used for numerical
data. In this work we introduce a microaggregation procedure for cate-
gorical variables. We describe the new masking method and we analyse
the results it obtains according to some indices found in the literature.
The method is compared with Top and Bottom Coding, Global recoding,
Rank Swapping and PRAM.
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1 Introduction

Companies and Statistical Offices collect data from respondents (either individ-
uals or companies) to extract rellevant information or to inform policy makers
and researchers. However, the fulfillment of this goal has to be done assuring
confidentiality and, thus, avoiding the disclosure of respondents’ sensitive data.
This is, disclosure risk should be minimized. Statistical disclosure control (SDC)
— or Inference Control — studies tools and methods (namely, masking methods)
to allow dissemination of data protecting confidentiality. Privacy preserving data
mining [1] is a related field with similar goals. While the former is oriented to
statistical databases, the latter is oriented to company proprietary information.

It is important to note that a straightforward manipulation of the data is
not enough for avoiding disclosure because data has to maintain the so-called
analytical validity [25]. This is, in short, that the analysis performed on the
protected data has to lead to results similars to the ones obtained using the
original data. In other words, information loss should be small. See [7] and [24]
for a state of the art description of the field.

For the purpose of data confidentiality, a plethora of masking methods have
been designed. A comprehensive description of the methods and their properties
is given in [4] and [24]. See also [5] for a comparative analysis of the methods with
respect to some indices for measuring information loss and disclosure risk. In [9],
an up to date review of the methods currently in use by National Statistical
Offices is given.
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Masking methods can be classified according to different dimensions. In re-
lation to this work, it is relevant to classify methods according to the type of
variables. Then, methods for categorical (either nominal or ordinal) variables and
methods for numerical (continuous) variables can be distinguished. Among the
methods for numerical variables, we can distinguish: rank swapping, microag-
gregation and noise addition. These methods are currently in use [9] and have
good performance [5] in relation to information loss and disclosure risk indices.
For categorical data, existing methods include Rank swapping, Top and Bottom
coding, recoding and PRAM (Post-Randomization Method).

A detailed analysis of the methods (see e.g. [4]) shows that some of the
methods for numerical variables are not appliable to categorical data (and vice-
versa). This is due to the intrinsic nature of the variables and the difficulties of
translating some numerical functions (e.g. addition, averaging) into a categorical
domain. Among those methods we find microaggregation.

From the operational point of view, microaggregation consists on obtaining
a set of clusters (gathering similar respondents) and, then, replacing the original
data by the averages of all the respondents in the corresponding cluster. In this
way, the data for each respondent is protected. For avoiding discloure, clusters
have to contain a minimum number of respondents (otherwise the average does
not avoid the disclosure because an individual contributing to the cluster, or an
external individual, can guess the value of another respondent). Difficulties on
extending this approach to categorical data rely on clustering and aggregation
and their suitability to deal with categorical variables.

Although, in general, the interest of translating masking methods from one
scale to another is not clear, the case for microaggregation is different. Numerical
microaggregation performs quite well with respect to the different existing indices
for information loss and disclosure risk. Moreover, it is shown in [5] that it is
the second best rated method for numerical data, just behind rank swapping.
Therefore, it seems appropriate to consider a categorical microaggregation and
whether this method can also lead to such similar good results.

In this work we introduce a categorical microaggregation method and we
show that it outperforms other masking methods for the same type of data.
The method is based on clustering techniques (see e.g. [16,17] and on some
aggregation operators, both for categorical data.

The structure of this work is as follows. In Section 2, we describe the ba-
sic elements we need latter on for defining our categorical approach. Then, in
Section 3, we describe the categorical microaggregation procedure. It follows,
in Section 4, a detailed analysis of the experiments performed to evaluate our
approach. The work finishes in Section 5 with some conclusions and future work.

2 Preliminaries

This section is divided in two parts. We start with a short description of mi-
croaggregation. Then, we review some aggregation procedures that can be used
for categorical data.
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2.1 Microaggregation

As briefly described in the introduction, microaggregation can be operationally
defined in terms of the following two steps:

Partition: The set of original records is partitioned into several clusters in
such a way that records in the same cluster are similar to each other and so
that the number of records in each record is at least k.

Aggregation: The average value (a kind of prototype) is computed for each
cluster and used to replace the original values in the records. This is, each
record is replaced by its prototype.

According to this description, an actual implementation of microaggregation
requires a clustering method and an aggregation procedure. While for numerical
data the main difficulty is on the clustering method (most clustering methods do
not apply because they do not satisfy the constraint about the minimal number
of records in each cluster), for the categorical data difficulties appear in both
processes.

In fact, while, up to our knowledge, there is no microaggregation method for
categorical data, there exist several methods for numerical data. Differences on
the latter methods correspond to differences on the way clusters are built (mod-
ification of standard techniques, novel approaches using genetic algorithms with
an appropriate fitness function, ...), on the way a large set of variables is con-
sidered (repeatedly applying univariate microaggregation — microaggregation for
a single variable, applying multivariate microaggregation — all the variables at
once, ...) or on the aggregation procedure. In relation to the aggregation proce-
dure, while the most common method is the arithmetic mean, other procedures,
as the median operator [18], have also been used.

2.2 Aggregation procedures for categorical data

At present, there exist several aggregation functions for categorical data. See
e.g., [26] for a recent survey on aggregation operators. Here we can distinguish
between operators for nominal scales (where only equality can be used to com-
pare elements) and ordinal scales (there is an ordering among the elements). In
the case of nominal scales, the main operator is the plurality rule (mode or the
voting procedure).

In the case of ordinal scales, operators can be classified, following [22], in
three main classes. We review below these classes considering the ordinal scale
L = {lp,---,lr} with a total order <, (defined as follows: Iy <p l; < --- <
lR).

1. Ezplicit quantitative or fuzzy scales: A mapping from L to a numerical (or
fuzzy) scale (say, N) is assumed. Then, aggregation functions are defined in
this underlying N scale. In some cases, this numerical scale is not given but
inferred from additional knowledge about the ordinal scale (e.g. from a one-
to-many negation function [20]). The operator in [22] follows this approach.
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2. Implicit numerical scale: An implicit numerical scale underlying the ordinal
scale is assumed. Operations on L are defined as operating on the underlying
scale. The usual case is that each category [; is dealt as the corresponding
integer 4. This is the case of Linguistic OWA [11] and Linguistic WOWA [21].

3. Operating directly on categorical scales: Operators stick to a purely ordinal
scale and are based only on operators on this scale. This is the case of the
median operator or the Sugeno integral [19]. These operators solely rely on
<r, (or to minimum and mazimum). Other operators in this class (e.g., the
ordinal weighted mean defined in [10]) are based on t-norms and t-conorms
(two operators that can be defined axiomatically over ordinal scales).

Aggregation operators for categorical scales where reviewed and analyzed
in [6]. Revision was focused on their application for prototype construction (a
case similar to the one considered here). Note that the aggregation step in mi-
croaggregation can be understood as building a centroid (a representative) for
each cluster. In short, results show that the most relevant aggregation method
for ordinal scales is the median (simpler to use and with a straightforward mean-
ing) but that this operator does not allow for compensation. Recall that in this
setting compensation implies that the aggregation of some values I, € L can be
a value in L different to the I, but in the interval [minl,, max(y,]. Also, the
standard definition does not include weights. Then, [6] introduced the CWM to
consider weights and to allow for compensation.

In this operator, a set of data sources X are assumed to supply values a;
(formally speaking a; = f(x;)), p(x;) are the importances of the sources z; € X.
Additionally, a function @ is used to distort the weights. The role of @ is to
distort the weights so that a greater importance is assigned to smaller, larger or
central values.

Definition 1. Let p : X — D C R be a weighting vector, let QQ be a non-
decreasing fuzzy quantifier (a non-decreasing function @ : [0,1] — [0,1] with
Q(0) = 0 and Q(1) = 1), then the CWM operator of dimension N (CW My, :
LN — L) is defined as:

CWMp(ai,--- ,an) = a if and only if acc™(a) > 0.5 > acc™ (b)

where b is the element previous to a in L (b = max{z|x € L,z < a}) and
where acc™(a) = >, -, acc” (b), acc” is the WOW-weighting vector of (L, acc”)
and Q, acc’(a) = acc' (a)/ Y e acc' (b) with acc’ defined as:

12 _ .
acc'(a) = mln(rlr)lgéc acc(b), Hblﬁ‘f acc(b)) (1)

and where acc(a) =3¢, o P(T;5)-

Roughly speaking, acc accumulates the weight of each element in L, acc’
makes this function convex (to allow for compensation) and acc” normalizes
so that it adds to one, acc” is a manipulation of this function (through @ to
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distort the importance of certain elements) and, finally, using acc® the element
that occupies the central position is selected.

The WOW-weighting vector used in the above definition was defined as fol-
lows:

Definition 2. Let (a;,pi)i=1,n be a pair defined by a value and the importance
of a; expressed in a given domain D C RT, and let Q be a fuzzy non-decreasing
quantifier. Then, the WOW-weighting vector w = (w1,--- ,wn) for (a,p) and Q
1s defined as follows:

2j<iPoG)\ g 2mg<i Pols)

W; =
ZjeL Ps(4) ZjeL Do (j)

where o is a permutation as above such that ay;i—1y = Ag(s)-

3 Proposed method

The proposed method for categorical microaggregation is based on the methods
for clustering and aggregation defined in the previous section. The proposed
algorithm is as follows:

procedure microaggregation (M: data matrix; NVar: int) is
I:= select variables to be microaggregated (M);
for i:=1 to |I] step NVar do
WS:= projection of M on variables (i ...max(|I|,i+NVar-1));
WS2:= only different records from WS;
FR:= frequency of records (WS2, WS);
NClust:= appropriate number of clusters (WS2, FR);
hard k-means of (WS2, FR);
aggregation and replacement (WS2, FR, M);
end for;
end procedure;

This is, first the variables to be microaggregated are selected from the data
matrix M. Then, groups of NVar variables are built from M defining a working
space (WS). Then, the WS is reduced (WS2) so that only different records are
allowed. For each record in WS2, its frequency in WS is computed and stored in
FR. This frequency is used by the program to estimate an appropriate value for
NClust (the number of clusters) to be used in the clustering process. Then, the
clustering algorithm is applied. Finally, the original values are replaced by the
new ones (the centroids of the clusters).

Now, we describe in more detail some of the elements that appear in the
algorithm above:

Clustering: Our clustering algorithm is based on the k-modes algorithm. This
latter algorithm, designed for categorical data (see [12]), is inspired on the
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k-means algorithm (for numerical data). In short, the method obtains the
optimal cluster through an iterative process consisting on the following steps:
(i) for each cluster, representatives are computed; (ii) records are assigned
to their nearest cluster.

The following three aspects have been considered in our implementation:

a) To bootstrap the process, an initial partition is needed. We build it at
random.

b) To determine which is the nearest cluster of a record, a distance, de-
fined as the summation of the distance between individual values, is
used. Here, nominal and ordinal scales are differentiated. For variables
on nominal scales, distance is defined as 1 when values are different and
0 when equal. In ordinal scales, distance is defined according to the po-
sition of the categories in the domain.

¢) To compute the representatives, an aggregation method is used variable
by variable. We use the plurality rule (mode or voting procedure) in
nominal scales. In ordinal scales, three alternatives have been considered:
mode (as for nominal scales), the CWM (as defined above) and a CWM
where a is the selected element if and only if acc® (a) > 8 > acc® (b) (for
a (0 randomly selected).

d) To assure that all final micro-clusters have a desired cardinality, some
elements are relocated.

Aggregation: For aggregation, we apply the same process used for computing
cluster representatives in the clustering algorithm.

4 Results

In this section we describe the results obtained for our masking method. We
start describing the methodology used to evaluate our method and then the
experiments and the conclusions of them.

4.1 Evaluation method

To evaluate our approach we have applied the methodology previously used
in [5] and in [27] consisting in developing a score combining two measures, one for
disclosure risk and the other for information loss. The score can be computed for
any pair (original-file, masked-file). Then, a data file was masked using different
masking methods (and considering different parameterizations for each masking
method) and the scores for each pair (original-file, masked-file) were obtained
and compared.

According to this, we got a score for each pair (masking-method, param-
eterization). Now we consider the computation of the score and the masking
methods we have considered to evaluate the categorical microaggregation. We

also describe the file used and how masked files have been constructed from this
file.
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The score The score used is the mean of an information loss measure and of a
disclosure risk measure. The rationale of this definition is that a good masking
method is the one that corresponds to a good trade-off of these both aspects.
Such definition is motivated by the fact that information loss and disclosure risk
are contradictory properties (no risk usually implies no information, and total
information implies total risk).

Disclosure risk was measured (following [5] and [27]) as the number of records
re-identified using record linkage programs (we used the mean of the number of
re-identifications obtained using two record linkage methods: probabilistic and
distance-based). Information loss was also computed as a mean, in this case a
mean of several information loss measures. In particular, we considered a direct
comparison of categorical values, a comparison of the contingency tables and
some entropy-based measures. These measures are described in detail in [5].

Masking methods considered To evaluate the performance of our categori-
cal microaggregation, we have considered 5 alternative masking methods. They
are Top and Bottom coding, Rank swapping, Global recoding and the Post-
Randomization method (PRAM). For each masking method, we have consid-
ered 9 different parameterizations. We briefly describe these methods and the
parameterizations considered (see [4] for details).

Top-coding (abbreviated T): This method consists on recoding the last p
values of a variable into a new category. We have considered p =1,2,...,9.

Bottom-coding (abbr. B): This method is analogous to the previous one but
recoding the first p values of a variable into the new category. We have
considered p=1,2,...,9.

Global recoding (abbr. G): This method recodifies some of the categories
into new ones. In our experiment, we have recorded the p categories with low-
est frequency into a single one. As before, we have considered p =1,2,...,9.

Post-Randomization method or PRAM (abbr. P): Some values are re-
placed by other values according to a Markov matrix. In our experiments,
we have considered the Markov matrix described in [14]. This is, let Ty =
(Ty(1),...,Ty(K))! be the vector of frequencies of the K categories of vari-
able V' in the original file (without loss of generality, assume Ty (K) =
ming Ty (k)), let @ be such that 0 < # < 1, then the PRAM matrix for
the variable V is defined as:

[ 1—0Ty(K)/Tv (k) ifl=k
Prt = {m(K)/((K — DTy (k) if I # k

Let the parameter p be p := 106. For each variable we have built nine
matrices generated with p taking integer values between 1 and 9.

Rank Swapping (abbr. R): From an operational point of view, this method
consists first on ordering the values in ascending order and then replacing
each ranked value with another ranked value randomly chosen within a re-
stricted range. For example, the rank of two swapped values cannot differ
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by more than p percent of the total number of records. We consider values
of p from 1 to 9.

The original file and the masked files We have used a data set extracted
from the Data Extraction System (DES) of the U. S. Census Bureau [3]. We
selected data from the American Housing Survey 1993. Variables and records
were selected as follows:

Variables selected: BUILT (Year structure was built), DEGREE (long-term
average degree days), GRADE1 (highest school grade), METRO (metropoli-
tan areas), SCH (schools adequate), SHP (shopping facilities adequate),
TRANI (principal means of transportation to work), WFUEL (fuel used
to heat water), WHYMOVE (primary reason for moving), WHYTOH (main
reason for choice of house), WHYTON (main reason for choosing this neigh-
borhood). BUILT, DEGREE, GRADE1 were considered ordinal variables
and the others nominal.

Records selected: We took the first 1000 records from the corresponding data
file. The number of records is small so that repeated experimentation was
possible in reasonable time.

For each file, for each masking method and for each parameterization 5 differ-
ent experiments have been carried out consisting on considering different subsets
of variables in the process. This is, we have considered the five subsets of vari-
ables described in Table 1. The Table also includes the names we have given
to the sets. Note that the set z includes only nominal variables, the set o in-
cludes only ordinal variables and the others consider both nominal and ordinal
variables.

Variable Type |g m o p z

BUILT ordinal XX
DEGREE |ordinal | X X X
GRADE1 |ordinal XX

METRO |nominal|X X
SCH nominal| X X
SHP nominal| X X

TRAN1 nominal| X

WFUFEL |nominal|X

WHY MOV E|nominal X
WHYTOH |nominal|X
WHYTON |nominal| X

<o e

Table 1. Subsets of variables considered in the experiments
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4.2 Experiments

Several parameterizations have been considered for microaggregation. Each pa-
rameterization consists on several parameters. Some of the parameters refer to
how variables are selected, others control the partition step and some others
correspond to the aggregation step. We describe these parameters below divided
in these three classes.

Parameters concerning variable selection: a single parameter has been con-
sidered for this aspect:

1) N'Var: corresponds to the number of variables to be aggregated together.
This is for multivariate microaggregation (when several variables have
to be microaggregated). In this case, groups of NVar variables are con-
sidered.

Parameters concerning the partition step: two parameters are used to con-
trol our variation of the k-mode algorithm.

1) K: is the minimum number of records included in a partition.

2) NIt: refers to the maximum number of iterations allowed in the iterative
process.

Parameters concerning the aggregation step: four different parameters are
used to select the aggregation procedure and to fix it.

1) Mode?: in the case of categorical variables on ordinal scales, we can
select among the mode and the median aggregation method. When this
parameter is set to true, the mode is applied. In the case of nominal
scales, only the mode operator is allowed.

2) Convex?: this parameter is to permit to make the frequency function
convex. When set to true, Equation 1 is applied (instead, when set to
false, acc’(a) = acc(a)). Recall that making frequencies optional allows
compensation among small and larger values because, when using the
median, the aggregation of a large and a small value can lead to some-
thing in between. This option can only be applied to ordinal variables.

3) Alpha: this parameter is used to distort the probabilities using the fuzzy
quantifier Q(z) = x®. Recall that the use of a fuzzy quantifier allows
to increase the importance of large/central or small values. Again, this
option can only be applied to ordinal variables.

4) Random?: instead of applying the median, a random selection is se-
lected among the categories in the cluster when Random? is set to true.
The probability of selecting a particular value is proportional to its fre-
quency. As before, this option can only be applied to ordinal variables.

For each of the parameters above (except for the number of iterations NIt
that is fixed to 5) several parameterizations have been considered. In particular,
we have considered all aggregation methods and the number of variables (NVar)
and the parameter K between 1 and 9. For the parameter « the values 0.2, 0.4,
0.6..., 2.0 have been considered.

The parameterizations considered for the microaggregation together with
the experiments considered for all the other masking methods resulted in 24525
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Mode? Random? Convex?|NVar K « |Set|Rank
F T T 04 09 2.0] p | 1220
T T T 09 091.6] p |1352
F T T 06 07 0.6 p | 1455
F T T 06 070.4| p | 1567
F T F 07 071.4| p | 1580
F T F 09 070.6] z | 2696
F T F 04 050.2] z | 2824
F T F 04 050.4| z | 2825
F T F 04 050.6] z | 2826
F T F 04 051.0] =z | 2827
F T T 09 09 1.2| m | 4605
F T F 08 09 0.6| m | 5483
F T F 09 09 1.2 m |5701
F T T 09 09 1.0 m | 6029
F T F 09 09 1.6| m | 6087
F T F 08 08 0.6| o 1
F T F 09 08 1.0| o 2
F F F 04 090.6] o 3
F F F 09 09 0.6| o 4
F T T 04 061.6] o 5
F T T 09 06 1.2| g |14506
F T F 09 07 1.0| g (14563
F T T 09 04 1.8| g 14585
F T T 09 04 1.0 g {14596
F T F 08 051.6| g (14601

Table 2. Parameterizations that performed the best for microaggregation.

different experiments. The computation of all these experiments lasted 4.5 days
(in a PC at 2GHz, running Red Hat 7.0).

Table 2 gives the 5 best parameterizations for the 5 sets of variables. It can
be observed that the best results are obtained for Mode?=false (24 times over 1)
— this corresponds to the use of the CWOW-median operator, Random?=true
(23 times over 2), and Convex=false (15 times over 10) and a large number of
variables (9 variables is the most selected NVar), and K=9. The most frequent
value for the o parameter is 0.6 (being 0.8 the second one).

This table also gives (column Rank) the position in a global ranking con-
sidering (method, parameterization, original file). Table 3 gives the two best
parameterizations for all the other masking methods tested (B, T, G, R, P),
using each of the selected set of variables. In this table, P(Set) refers to the best
parameterization obtained for the masking method with the set of variables Set,
and Rank(Set) refers to the position in the ranking of such parameterization
for the same set. It can be observed that the best parameterizations in Table 2
perform better than the parameterizations of the other methods except for the
set g.
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According to all this, a categorical microaggregation with parameters Mode?
equal to false and Random? equal to true yields good results. A good set of
parameters is when the number of variables is large (e.g., NVar=9) and the
constants K and « are such as: K =9 and o = 0.6.

In the case of the set g, the best performance corresponds to the PRAM
masking method. Note that the set g precisely corresponds to the set with a
major number of variables.

Using Table 3, we can see that Rank Swapping can be considered as the sec-
ond best masking method. We observe that when the set of variables considered
corresponds to p, m or o, rank swapping has the second best performance. These
three sets of variables correspond to the case in which all or most of the variables
are ordinal. The two other sets analyzed z and g, with bad results, correspond
to either all variables nominal or one ordinal over 7 nominal ones.

Method|P(p) Rank(p)|P(z) Rank(z)|P(m) Rank(m)|P(0) Rank(o)|P(g) Rank(g)
B 9 21548 1 16534 4 23682 7 12996 1 23719
B 8 22158 7 18828 3 23761 9 13183 2 24503
T 9 17318 7 7075 3 21936 6 13504 1 11660
T 8 19744 6 7319 2 22714 5 14367 2 12351
G 9 21703 6 7277 4 22950 7 11872 2 11233
G 8 22452 5 7656 3 23400 8 12199 1 11863
R 6 9567 1 9664 3 11423 2 9797 2 19998
R 9 10779 7 10917 7 12000 3 11139 1 20109
P 4 23590 | 9 9161 9 20945 9 21789 | 9 10473
P 6 23604 | 5 9189 8 21605 8 22187 | 6 11079

Table 3. For each masking method considered, except for microaggregation, the best
two parameterizations in terms of the score

5 Conclusions and future work

The results presented here expand the ones in [5]. In this work, two additional
masking methods (namely, Rank Swapping and Categorical microaggregation)
have been added. In that paper, it was concluded that the PRAM performance
(with the current parameterization) was not good. In this work we have shown
that for a particular set of variables PRAM yields the best results. These results
have been obtained for the largest number of variables. Nevertheless, further
work is needed to confirm the influence of a large number of variables on the
good performance of PRAM.

Categorical microaggregation has been shown to have a good performance.
This method is based on the k-modes clustering algorithm and either the mode
or the median for the aggregation step. For each of the sets of variables except
one, there was a good parameterization that yielded to the best performance.
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Additionally, the analysis described in this paper show that rank swapping is
the second best masking method for ordinal data. This method was not included
in the analysis in [5].

In this work we have studied masking methods using general information loss
and disclosure risk measures. This is, not considering particular data uses. The
analysis of microaggregation from this viewpoint remains as future work.

As future work we consider the application of fuzzy clustering algorithms in
the clustering partition step. Recent results on fuzzy clustering are reported in
e.g- [2,8,13,15].
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Abstract

This paper studies aggregation operators in ordinal scales for their
application to clustering (more specifically, to microaggregation for sta-
tistical disclosure risk). In particular, we consider these operators in the
process of prototype construction. The paper analyses main aggregation
operators for ordinal scales (plurality rule, medians, Sugeno integrals and
ordinal weighted means among others) and shows the difficulties for their
application in this particular setting. Then we propose two approaches to
solve the drawbacks and we study their properties. Special emphasis is
given to the study of monotonicity as the operator is proven to non sat-
isfy this property. Exhaustive empirical work shows that in most practical
situations this cannot be considered a problem.

Keywords: aggregation operators, median operators, OWA-
like operators, WOWA-like operators, monotonicity, clustering,
microaggregation, ordinal scales

1 Introduction

Information fusion techniques and aggregation operators are commonly applied
into several fields of human knowledge. As different fields imply different re-
quirements, a large number of aggregation operators exists nowadays. Also,



differences on the way knowledge is represented forced to the development of
tools to deal with the different knowledge representation formalisms. In par-
ticular, methods exist to deal with different kind of data. For example, there
are methods to fuse numerical information (i.e., data in numerical scale [9]),
categorical information (either ordinal [10] or nominal scales [15]), information
expressed by means of partitions (or, equivalently, equivalent relations [6]), den-
drograms (classification trees), preferences, orderings, images, ...

This work is devoted to the case of categorical information. The development
of operators of any kind for categorical information is always a difficult task due
to the limited number of commonly established operators over these scales. In
the particular case of aggregation operators, this is even more noticeable because
the corresponding operators over numerical scales are the means. These well-
known operators are based on product and addition, two operations that do not
apply to ordinal scales.

To overcome these difficulties, researchers have considered three main differ-
ent approaches for the case of ordinal scales. We detail them below considering
operators over the scale L = {ly,--- ,lg} where lg <p Iy <p --- <p lg. This
classification is based on [19].

1. Explicit quantitative or fuzzy scales: It is assumed a translation function
that assigns values in a different numerical scale for all values in the orig-
inal ordinal scale. The operators in the ordinal scale are defined from the
operators in the underlying scale. Operators defined for fuzzy sets using
the extensional principle belong to this class. In some cases, this explicit
scale is not given but inferred from additional knowledge about the ordinal
scale (e.g. one-to-many negation functions [17]). This is the case of the
aggregation operator in [19].

2. Implicit numerical scale: Operators assume an implicit numerical scale
underlying the ordinal scale where values are defined. Usually, each cate-
gory l; is dealt as the corresponding integer i. This is the case of Linguistic
OWA [11] and Linguistic WOWA [18].

3. Operating directly on qualitative scales: Operators stick to a purely ordinal
scale and are based only on operators of this scale. This is the case of the
median operator or the Sugeno integral [16]. These operators only use
the relation <; and minimum and mazimum that rely on <;. Other
operators in this class (e.g., the weighted mean defined in [7]) are based on
t-norms and t-conorms. Two operators that can be defined axiomatically
over ordinal scales.

The motivation of our work is the application of aggregation operators to
statistical disclosure risk. In particular, we consider the extension of existing
microaggregation procedures for numerical scales to ordinal scales (see [4] for a
state of the art description of microaggregation procedures). Microaggregation
techniques are applied to avoid disclosure of confidential data. To avoid the re-
identification of the individual in a data file, the information of these individuals



is distorted. Microaggregation consists on clustering the data in smalls clusters
(less than 10 individuals) and replacing the original values by the prototype (an
aggregated value) of the cluster. See [3] for a detailed analysis of the performance
of microaggregation with respect to other distorting techniques for microdata
protection.

In this setting, tipically, no much information is available on the underlying
semantics of categories in ordinal scales. This focus our work on the third class
of aggregation operators. This is the only case where no assumptions are made
on the existence of an underlying structure beneath the ordinal scale.

The structure of this work is as follows. We begin reviewing in Section
2 existing aggregation operators in ordinal scales. This section also reviews
different usages of weights in aggregation operators. Then, in Section 3, we
comment on the suitability of these operators for prototype building. Section
4 introduces new operators for solving the shortcommings of existing ones, and
analyzes their properties. The work finishes with some conclusions.

2 Aggregation operators in ordinal scales

In this section, we review some of the existing aggregation operators in ordinal
scales that operate directly on categorical values. We begin with the plurality
rule. Then we follow with the median and the Sugeno integral. The Sugeno
integral generalizes the median and other aggregation operators in categorical
scales. We finish outlining the ordinal weighted mean.

2.1 Plurality rule

The Plurality rule (or plurality function) corresponds to the selection of the
most frequent elements. In fact, the definition does not return a single element
but the set of elements that appear more often. Assuming that values to be
aggregated belong to the set L, the plurality rule can be formulated in the
following terms (this definition is based on [15]):

Definition 1 A mapping P : L — o(L) is a plurality function when P(ay,--- ,an)
is the set of all those y in L so that no z in L appears more often in (a1,--- ,an)
than y.

This definition shows that the procedure can be applied to elements in or-
dinal scales as well as to elements in nominal scales. So, L is not required to be
ordered.

Plurality rule can be extended to introduce weights to measure the reliability
of or the confidence in each value a;. This is formulated making explicit the in-
formation sources X = {z1, -+ ,zn} (here we assume that z; supplies the value
a;) and defining the weights as either a function w from X into a given domain
(e.g., [0,1]) or as a weighting vector w = (w1, --- ,wn). Both approaches are
equivalent as w; = w(z;). In the definition of the weighted plurality function it



is also considered a function f to relate each information source with the value
it supplies: f(z;) = a;.

With all this information, the weighted plurality rule selects the values that
accumulate more weights. This is formalized below by means of a function acc
that when applied to a € L returns the accumulation of the weights of all the
sources z; that supply the value a.

Definition 2 Let w be a weighting vector of dimension N, then a mapping
WP, : LN — (L) is a weighted plurality function when Py(as,---,an) is
the set of all those y in L so that no z in L, acc(z) > acc(y) where acc(a) =
Zf(zj):aw(xj)

In this definition, the range of the weights is restricted to be in such a way
that addition is allowed. Therefore, real numbers and integer numbers are both
appropriate for weighting vectors. Moreover, ordinal scales where addition-like
operators are defined are also appropriate. This is the case of ordinal scales with
t-conorms (see [14] for a detailed analysis of t-norms and t-conorms in ordinal
scales). We would like to underline that there is no need to impose that the
domain of the weights are equal to the one of the data.

2.2 Median

The median procedure is to select the element that occupies the central position
of a sequence of elements when they are ordered according to their value. This
can be formaly described for numerical data as follows:

Definition 3 A mapping M: RN — R is a median of dimension N if:

Ao (N/2)FTo(N/2+1) .
M(as, - ,an) = IR SRR when Nz.s even
Qy(N41) when Nis odd
2

where {o(1),...,0(N)} is a permutation of {1,...,N} such that a,;_1) >
ag(i) for alli = {2,..., N} (i.e. a,(; is the i-th largest element in the collection
Apy-eny aN).

When dealing with categorical data (this is, M is a function M : LN — L),
one of the following expressions will be used for the case of N being even:

Qo(| ML) Go(12417)

They correspond, respectively, to aqs(n/2) and to ay(n/241)-

This definition can also be extended to include weighting vectors. In this
case, the central element is a relative position according to the weights. As
in the case of the Plurality rule, we formalize this definition considering the
set of sources X, the function f that assigns the values to the sources and the
weighting vector w.



Definition 4 Let w be a weighting vector of dimension N, then a mapping
WMy, : LN — L is a Weighted Median of dimension N if:

WMw(a1,--- ,an) = a if and only if acc(a) > 0.5 > acc(b)

where acc is a function over the values in {ai,...,an} defined as acc(a) =
> f(z)<a W(;) and where b is the largest element in {ay,...,an} that is smaller

than a. This is, b = max{z|z € {a1,...,an},z < a}.

In this case, the most natural weighting vector is one defined by positive
real numbers that add to one. This is, > w; = 1 and w; € (0,1] (note that the
definition requires w; # 0). However, other possibilities are also possible. In
particular, natural numbers can be considered. The weighted median for weights
in N can easily be translated into the previous one through normalization. This
is, defining a new weighting vector w; = w;/ }_; w;. Moreover, an ordinal scale
O with multi-valued logic operators can also be used. In this case, besides of a
t-conorm for addition, an involutive negation is also required (a function n from
O to O). In such case, instead of selecting a value on the basis of the value 0.5
we would use the element z € O such that its negation is also z (i.e., z = n(z)).

2.2.1 Order statistics

There exists a set of aggregation operators that are similar to the median.
They are the so-called order statistics (we denote this family of functions by
0S). Order statistics permit the selection of the i-th greatest value. To do
so, the operator requires a preliminary ordering process as in the case of the
median and then an integer value ¢ in the range [1, N] to select the i-th element.
Alternatively, a definition can be given when instead of an integer value, a real
number ¢ in the unit interval is given. Le., selecting the element that occupies
the a-100 percentage of the domain. As the operator only relies on the ordering,
it can be applied to ordinal scales.

When the selection of an element is based on a real number (in the unit
interval) weights can be included in the definition. This corresponds to replace
0.5 by « in Definition 4. We denote by WOS the corresponding weighted order
statistics. It is clear that the approach is similar to the case of the weights in the
median. As before, weights correspond to the importance of the sources and can
either be real or natural numbers. In the latter case, normalization is required.
Ordinal scales can also be used. In this case, the parameter ¢ should be a value
in the same ordinal scale (instead of a real number in the unit interval).

2.3 Sugeno integral

An alternative aggregation operator that also permits the inclusion of weights
for the information sources is the Sugeno integral [16] (see [13] for a detailed
account of its properties). However, this integral does not consider weighting
vectors but the so-called fuzzy measures. If X = {z;,---,zn} is the set of



information sources, a fuzzy measure is a set function that given a subset A of
X returns a measure of its importance.

Fuzzy measures satisfy three axioms: (i) the measure of the empty set is
zero (when no source is considered, the importance is zero), (ii) the measure
of the whole set is 1 (when all the sources are considered, the importance is
maximal and settled to one); and (iii) the larger the set of sources, the larger
its importance. The first two conditions correspond to boundary conditions and
the third one corresponds to monotonicity. Formal definition of these conditions
are given below:

Definition 5 A fuzzy measure p on a set X is a set function p : p(X) — [0,1]
satisfying the following axioms:

(i) w(®) =0, u(X) =1 (boundary conditions)
(i) A C B implies u(A) < u(B) (monotonicity)

This definition is given in the interval [0, 1], but the same definition applies to
any ordinal scale L = {lg,- -+ ,Ig}. In this latter case, the measure is a function
from p(X) into L and the boundary conditions are u(@) = lo and u(X) = Ig.

The Sugeno integral [16] is defined as the integral of a function f (the one
that establishes the value f(z;) for the information source z;) with respect to a
fuzzy measure. In a numerical scale, the definition is as follows:

Definition 6 Let p be a fuzzy measure on X, then, the Sugeno integral (SI for
short) of a function f : X — [0,1] with respect to u is defined by:

/ = g min( ) (Ao (1)

where f(z5(;)) indicates that the indices have been permuted so that0 < f(z51)) <
- < f@gny) <1, Agy = {Zs(i)s - Ts(v) } and f(z50)) = 0.

When the values belong to an ordinal scale, an analogous definition applied.
In this latter case it is important to emphasize that both the function f and the
fuzzy measure p are defined as mappings into the same ordinal scale L otherwise
the minimum and the maximum operators are not meaningful.

The Sugeno integral is a very general operator as it generalizes several other
aggregation operators. In particular, it generalizes the weighted minimum and
the weighted maximum (see [5] for a detailed description of these operators and
of their properties). They are aggregation operators to be used to model logical
conjunction and disjunction when the sources are weighted. We review below
the weighted maximum. The weighted minimum has a similar definition. Both
operators use weighting vectors for expressing importance or reliability. Here
the weights map each source into a value in an ordinal scale. Note that, as
before, the scale for the values to be aggregated should be the same that the
scale for the weights. This is so because the minimum combines the values of
the weighting vector and the values a;.



Definition 7 A wvector v = (vi...vn) is a possibilistic weighting vector of di-
mension N if and only if v; € L and max; v; = lg.

Definition 8 Let u be a weighting vector of dimension N, then a mapping
WMaz: LV — L is a weighted maximum of dimension N if W M azy(ay, ...,an) =
max; min(u;, a;).

2.4 Ordinal weighted mean

In this section, we give an overview of ordinal weighted mean without going into
details. See [7] for detailed definitions and properties and [8] for an extension
of the approach to Choquet integrals.

The ordinal weighted mean (OW M for short) is a different approach to
extend the weighted mean to ordinal scales. The general idea of the operator is
to translate addition and product in the weighted mean by similar operations
in the ordinal scale. Two operations of multi-valued logics are selected for this
purpose: t-norms and t-conorms.

T-conorms are addition-like operators that satisfy monotonicity, commuta-
tivity, associativity and have as neutral element the value 0 (lp in the ordinal
scale L = {lg,---,Ig}). T-norms are product-like operators that satisfy the
same properties except for the neutral element that in this case is 1 (I when
defined in the ordinal scales L).

Ordinal weighted mean assumes that weights are natural numbers. Then,
the multiplication of a weight by a value corresponds to multiple additions of the
corresponding value. Here addition is achieved through the t-conorm. As the
ordinal scale is usually not enough to accumulate all the values to be aggregated,
a new scale is introduced that extends the original scale. This new scale is the
product of the subset of natural numbers {1,---, N} (where N is the number
of values to be aggregated) and the original scale. Once the accumulated value
is obtained in this new scale, division by the accumulation of the weights leads
to the final aggregated value.

Extensions of this operator exist that consider other scales than natural
numbers for the weights. Also, the same approach was applied to extend the
Choquet integral [2] to ordinal scales. This is the so-called Ordinal Choquet in-
tegral (OCT for short). Choquet integral is the natural extension of the weighted
mean to the case of considering numerical fuzzy measures. In some way, Sugeno
integrals are the ordinal counterpart of Choquet integrals.

2.5 Considering weights in aggregation operators

Aggregation operators use parameters for expressing additional knowledge about
the values, the sources and its current application. Some of the common uses
of the parameters are the following ones:

Expressing importances of individual information sources: Thisisthe
typical case of weighting vectors in weighted means and similar aggrega-
tion operators (weighted maximum, weighted minimum, plurality rule,



median). We associate to each source a weight in a given scale. The
larger the weight, the more important is the source in determining the
aggregated value.

Expressing importances of values: This is the approach considered in the
OWA operator (operator defined by Yager in [20] — see also [21] about
including other types of weights). Weights do not measure the importance
of a source but of the values. For instance, it is possible to give more
importance to small values than to larger ones. This would be the case if
a robot fuses estimated distance to a nearby object: it is more important to
consider small values than larger ones to avoid collisions. OWA operators
and related ones (e.g., Choquet integral that generalizes OWA operators)
can be used for this purpose.

Expressing importances of sets of information sources: Thisis the case
of the Sugeno integral and other similar operators (the Choquet integral
and the Fuzzy t-integral). These operators do not only allow to express
the importance of a particular information source, but also the impor-
tance of a set of sources. Fuzzy measures can be used to represent this
information. In the numerical case, it can be proven that fuzzy measures
can be used to represent both the importances of the individuals and the
importance of the values.

|P WP M WM oS wWoS SI WMax OWM ocCI
1) |v w N, ifiel wifiel p w w
(0,8,9,n) (0,8,®,n)
@0 N 0 N 1 N+1  2°¥ N N 2N
3) RN RN RN I L N N
(0, ®) (0, &,n) (0,®,n) (0, ®) 0, ®)
@ X v X v X v 7V v
G| X X X X X X J X X V
6 [ X X X X X X X X V Y

Table 1: Characteristics of ordinal aggregation operators: / means that the
characteristic is always fullfilled; X that is never possible; other values cor-
respond to particular characteristics. Here, I stands for the unit interval, O
corresponds to an arbitrary ordinal scale, (O,®) to an ordinal scale with a t-
conorm, (O, ®,n) an arbitrary ordinal scale with a t-conorm and a negation and
(O, ®,®,n) an ordinal scale with a t-conorm, a t-norm and a negation.

2.6 Summary of aggregation operators in ordinal scales

Table 2.5 gives an overview of the main characteristics of the aggregation oper-
ators reviewed so far.



The first row is whether the function can be used for an arbitrary number
of values to be aggregated and the parameters required, if any. In fact, all
functions can be applied to an arbitrary number of parameters easily. In the
case of the order statistics, it is appropriate that the parameter used is a real
number in the unit interval in order that the selection of the i-th element do
not change the meaning when additional elements are considered. With a real
number, the parameter corresponds to the selection of the element that occupies
the i% percent.

The second row is the number of parameters required when the number of
values to be aggregated is N.

The third row is the range of the weights (if any). In this row, O corresponds
to an arbitrary ordinal scale while L is used when the scale should be the same
that the one for the values to be aggregated. @, ® and n stand for t-conorm,
t-norm and negation functions over O. R and N stand, as usual for real and
natural numbers.

The fourth row is whether the aggregation procedure allows the weighting of
the sources. The fifth row is for the weighting of the values. Positive marks are
given for the Sugeno and the Choquet integral to both kind of weights as fuzzy
measures can be defined to express this information. However, for measures
in ordinal scales it is difficult to model at the same time the weighting of the
sources and the weighting of the elements. This is not the case in the numerical
setting when the measure can be built from two weighting vectors one modeling
each alternative (as for the WOWA in [18]).

The last row is about the possibility of obtaining a value that is not present
in the original set of values to be aggregated.

3 Aggregation procedures for prototype construc-
tion

In this Section, we review the difficulties of using the aggregation procedures
reviewed so far when applied to building prototypes within clustering meth-
ods. Although our point of view is biased to clustering methods for microdata
protection, the analysis is appliable to most clustering problems.

Clustering methods are applied to multidimensional data to build a set of
clusters in which similar elements are put together and dissimilar elements are
left into different classes. One of the open problems in clustering is how to deal
with categorical data. In fact, several difficulties arise in this case: computation
of similarities between categories, combination of similarities when each indi-
vidual is represented in terms of different variables evaluated in different scales,
prototype calculation for each cluster. In this work we are interested in the
lattest problem: the computation of the cluster prototype.

The computation of the prototype is usually achieved in numerical scales
using some kind of aggregation procedure. Usually an arithmetic mean although
some other aggregation operators are conceivable. In particular, the weighted



mean (e.g. to give different importance to different individuals in the cluster
[12]) or the OWA (e.g. to give more importance to central elements than to
elements with large or small values [22]).

In the case of categorical data, the methods described in Section 2 are appli-
able. Now we consider in detail the applicability of each method for prototype
calculation:

Plurality rule: The application of the majority rule is straightforward. How-
ever, some inconveniences can be distinguished. The first one is that the
majority rule returns a set of the most frequent values. Therefore, when
the prototype is a single value, a selection procedure has to be considered
to select one of the values. Another drawback is that the function does
not allow for compensation. We understand here for compensation the
fact that when the data to be fused contains two values a; and aj, the
output can be a value in between, say ay, regardless a; € {a1, - ,an}
or not. In other words, an aggregation function C is not compensative
if for all a;,a; € {a1,--- ,an}, the aggregated value is always one of the
original ones: C(ay,--- ,an) € {a1,--- ,an} for all a; € L

Therefore, when large and small values but not medium ones are fused,
the final value will be either a large or a small one. Note that in the
numerical case, the mean & = ), z;/N minimizes Y (2z; — Z)?, and the
selection of a large value (or a small one) instead of Z would give a larger
difference.

An additional difficulty of this lack of compensation is that when the
number of values to aggregate is small, small variations on the elements
can provoke large modifications of the output. E.g., the aggregation of
the values lg,lo,!3,14 is lp and the aggregation of the values ly,lo,I3,14 is
l4. Thus, a small modification of the inputs (a single value) results into a
large variation of the output (from Iy to ly).

Weighted median has an additional difficulty: it is not always possible
to have available the required weighting vector. This is so, because in
prototype selection it would be required a weight for each individual. In
fact, there are some applications in which this information is available
(e.g., [12]). However, this is not the general case, because it is usually
assumed that the representativeness of all elements is the same (for all the
application domain).

Special difficulties arise when weights are not numerical but defined in
ordinal scales. This is so, because not all the clusters have the same
number of elements and therefore, normalization is required in each cluster
(otherwise with a few elements we can get that all elements a; have acc(a;)
equal to 1, and, therefore, selection is not possible). Also, selection of the
appropriate t-conorm is not an easy task, specially for non-experienced
users.

Also related to weights, no weights for the values are considered in the
function.
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Median: The application of the median operator for prototype selection is
straightforward. However, it presents some of the drawbacks of the plu-
rality rule: The median always returns one of the values to be aggregated
(e.g., the median of ly,In_1,In is Ixy—1 while a straight average of the in-
dices gives l(2a7-1)/3); it does not allow to consider weights for the values;
and the same comments about the weighting vector given for the plurality
rule apply to this case. Order statistics have similar properties although
in this case, the weight allows the selection of other values than the central
one.

Sugeno integral: The main difficulty for the application of the Sugeno inte-
gral in the setting of prototype selection is the definition of the correspond-
ing fuzzy measure. According to the definition of the integral, the fuzzy
measure has to be defined into L as the values a; are. Several difficul-
ties apply in this case: defining measures for all possible clusters requires
a huge number of fuzzy measures (only parameterized families of fuzzy
measures can be used - and parameterization is difficult in ordinal scales);
when several variables are used in the clustering process, fuzzy measures
have to be defined for each variable (the set L usually changes for each
variable and the fuzzy measure has to be defined on the same scale that
the variable) and this increases the complexity of this definition; for each
variable and each set of N sources, 2V values are required.

Another drawback of the Sugeno integral is that it does not allow for
compensation. In fact, this statement has to be tinged because the final
value can be different from the original ones. This is possible because the
final value can be one of the ones used by the fuzzy measure. This can
cause some sort of compensation.

Some of these difficulties also apply to Weighted maximum.

Ordinal weighted mean: The main difficulty for using the ordinal weighted
mean is the requirement of a t-norm and t-conorm for the domains of the
variables. This means having one pair (t-norm,t-conorm) for each of the
variables.

As a conclusion, we can say that the two most relevant difficulties for apply-
ing the above mentioned aggregation operators is that most operators do not
allow for compensation and that also most of them do not allow for weighting
the sources.

Detailed analysis of the methods shows that the most relevant operation
for the problem of prototype selection is the median. This is, in fact, the
operator usually considered as the ordinal counterpart of the weighted mean.
Sugeno integral and ordinal weighted mean are specially difficult to apply due,
respectively, to the need of fuzzy measures and definitions of t-norms and t-
conorms.

In the next section we introduce WOW-operators for including compensation
and weighting for the sources to categorical aggregation operators. Then we
particularize the approach to the case of the median.
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4 Weighting of values and compensation

The inclusion of the weights for the values is based on the Weighted OWA
(WOWA) operator defined in [17]. This operator is a generalization of both the
weighted mean (WM) and the Ordered Weighted Averaging (OWA) operator
(defined by Yager in [20]) allowing users to have in a single operator the param-
eters of both operators. In fact, both WM and OWA have parameters of the
same form (weighting vectors: positive weights that add to one). However, in
spite of having the same form, the parameters have different meaning. Let us
recall both operators:

Definition 9 A vector v = (v1...uN) is a weighting vector of dimension N if
and only if v; € [0,1] and Y, v; = 1.

Definition 10 Let p be a weighting vector of dimension N, then a mapping
WM: RN — R is a weighted mean of dimension N if WMp(ay,...,an) =

Ei Dia;.

Definition 11 Let w be a weighting vector of dimension N, then a mapping
OWA: RN — R is an Ordered Weighting Averaging (OWA) operator of dimen-
sion N if

N
OW Aw(ay,...,an) = Z Wiy ()
i=1

where {o(1),...,0(N)} is a permutation of {1,..., N} such that az;;_1) > aq ;)
for all i = {2,..,N} (i.e. a, is the i-th largest element in the collection
A1y eeny aN).

Similarities and differences between both operators can be underlined as
follows:

e The weighted mean is a linear combination of weights and values where the
weights are linked to the values we aggregate. This is usually understood
as the importance or reliability of the information sources. The larger
a weight is, the more influence has the corresponding value to the final
output. The smaller a weight, the lesser influence has the correponding
value.

e The OWA operator is also a linear combination of weights and values.
However, in this operator weights are not linked to the values them-
selves but on their relative position. Note that any permutation 7 of
the values to be aggregated lead to the same result: OW Ap(aq,...,an) =
OWAP (a,r(l), ceny a,r(N)).

The WOWA operator that generalizes both operators is defined as follows:
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Definition 12 Let p and w be two weighting vectors of dimension N, then
a mapping WOWA: RV — R is a Weighted Ordered Weighted Averaging
(WOWA) operator of dimension N if

WOW Ap w(a,....,an) = Z Wilg ()

where o is defined as in the case of the OWA (i.e., ay(; is the i-th largest
element in the collection ay,...,an ), and the weight w; is defined as:

w; = 'U)*(Zpd(j)) - W*(Z Po(j))

i<i j<i

with w* being a monotonic increasing function that interpolates the points (i/N, ", ; w;)
together with the point (0,0). The function w* is required to be a straight line
when the points can be interpolated in this way.

In this definition, the weighting vector p corresponds to the weighting vector
of the weighted mean and w corresponds to the weighting vector of the OWA
operator. Then, w is a new weighting vector that considers the interactions
between p and w.

The function w* built above from the vector w can be understood as a fuzzy
quantifier (a non-decreasing fuzzy quantifier) while the weights p can be seen
as a probability distribution. A non-decreasing fuzzy quantifier is a monotonic
function @ (i.e., Q(a) > Q(b) for all a > b) such that Q(0) =0 and Q(1) =1.

In the definitions given above, weighting vectors are presented in conjunc-
tion with the definition of the operator. However, these vectors and their trans-
formation can be established without the corresponding operator and used in
other families of operators. This is defined below using the non-decreasing fuzzy
quantifier @ (@ can be interpolated from w when required as above).

Definition 13 Let (a;,pi)i=1,v be a pair defined by a value and the importance
of a; expressed in a given domain D C RT, and let Q be a fuzzy non-decreasing
fuzzy quantifier. Then, the WOW-weighting vector w = (w1, - ,wn) for (a,p)
and @Q is defined as follows:

wi = 2 j<iPali) _ 2 j<iPo(s)
;= Q=12 bl ASACTA
EjeL Do (i) ZjeL Do (i)

where o is a permutation as above such that a,(;—1) > ag(;)-

This definition permits to include the weighting of the sources to aggregation
operators for categorical data. The following definition exploits this fact to
define a WOW — C operator from an operator C.

Definition 14 Let X = {z1,...,zx} be a set of information sources, let a;
be the value supplied by the source x;, let C be an aggregation operator with
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parameter p : X — D and let Q) be a non-decreasing fuzzy quantifier Q. Then,
the WOW — C operator is defined as follows:

WOW -Gy qg(ar,---,an) = Cy(ar,--- ;an)

where w is the WOW-weighting vector of (a;, p;i)i=1,n and Q following Definition
13.

The second aspect to be introduced in the aggregation process is compen-
sation. This is achieved, following [1], making data values convez. Recall that
compensation is that values ar ¢ {a1,---,an} such that min(a;,a;) < ar <
maz(a;,a;) for a;,a; € {a1,--- ,an} can be selected. Our approach to allow
compensation is to redefine the function acc in Definition 4 so that acc(ay) # 0.
In this way, ay can be selected by the aggregation function.

Definition 15 Let p : X — D C R be a weighting vector, then a mapping
CWMy : LN — L is a Convex Weighted Median of dimension N if:

CW Mp(a1,- - ,an) = a if and only if acc'"'(a) > 0.5 > acc” (b)

where acc"'(a) = Y-, <, acc’(b), acc’(a) = acc'(a)/ Y, acc'(b), acc'(a) =
min(maxp<, acc(b), maxy>, acc(b)), acc(a) = > f(z)=a P(T;) and where b is the
element next to b in L. This is, b= max{z|z € L,z < a}.

Now we show the application of these two procedures (the one for weighting
the values and the one for allowing compensation) to the median and to the
plurality rule. This application leads to the CWOW-plurality rule.

Definition 16 Let p : X — D C R be a weighting vector, let Q be a non-
decreasing fuzzy quantifier, then a mapping CWOW — Mediany : IN 5 Lisa
Convex WOW-Median of dimension N if:

CW Mw(a1, -+ ,an) = a if and only if acc™(a) > 0.5 > acc™ (b)

where acc®(a) = Y, ., acc" (b), acc is the WOW-weighting vector of (L, acc'")
and Q, acc”(a) = acc'(a)] ey, acc'(b), acc' (a) = min(maxy<, acc(b), maxp>, acc(b)),
acc(a) = Y j(p,)=q P(;) and where b is the element next to b in L. This is,
b =max{z|z € L,z < a}.

Definition 17 Let w be a weighting vector, and Q) a non-decreasing fuzzy quan-
tifier, then a mapping WP, : LV — p(L) is a CWOW-plurality rule when
Py(a1,--- ,an) is the set of all those y in L so that no z in L, acc"(z) >
acc” (y) where acc”(a) is the WOW-weighting vector of (L,acc') and Q, acc'(a)
= min(maxy<, acc(b), maxy>, acc(b)) and acc(a) = Ef(wj):a w(zx;)
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Table 2: Information sources and values to be aggregated

| lo ll l2 l3 l4 15 le | CWOW-Med |
acc 2 3 1 0 2 1 0 l4
acc’ 2 3 2 2 2 1 0 lo
acc” 2/12  8/12  2/12  2/12  2/12  1/12 0 Iy
acc(a=1/8) | 0.7993 0.0970 0.0385 0.0298 0.0245 0.0108 0.0 lo
acc"(a=1/4) | 0.6389 0.1644 0.0705 0.0566 0.0478 0.0215 0.0 lo
acc"(a=1/2) | 0.4082 0.2872 0.1182 0.1022 0.0914 0.0425 0.0 I
acc"'(a=1) 0.1666 0.25 0.1666 0.1666 0.1666 0.0833 0.0 ls
acc"'(a = 2) 0.0277 0.1458 0.1666 0.2222 0.2777 0.1597 0.0 I3
acc"'(a = 4) 0.0007 0.0293 0.0856 0.2006 0.3896 0.2939 0.0 ly
acc"'(a = 8) 0.0000 0.0009 0.0124 0.0867 0.3984 0.5014 0.0 l5

Table 3: The CWOW — median for o € {1/8,1/4,1/2,1,2,4,8}

4.1 CWOW-Median

In this section, we study the CWOW-Median procedure defined in Definition 16.
We begin giving an example that shows the suitability of the approach for
obtaining, with appropriate parameterizations, values between the minimum
and the maximum of the value to be aggregated. Then we analyze the properties
of the operator focusing in the monotonicity condition.

Example 1 Let X = {z1,%2,s3,%4,5,26,%7,Ls,T9} be a set of information
sources, let f(z;) = a; be defined as in Table 2 (here L = {lo,l1,12,13,14,15,1l6}),
and let p(x;) = 1 for all x;, then, the CWOW — Median for Q(z) = z*
for o € {1/8,1/4,1/2,1,2,4,8} is given in Table 3. This table includes the
computed vectors acc, acc', acc” that are common for all CWOW — Median
operators and then the vector acc” for each considered . The last row of the
column describes the aggregated values CWOW — Median for each of the values
and also the median for the original data (first row — acc row) and for the convex
weighted median (second and third row, denoted by acc' and acc' rows).

This example shows that the CWOW — Median permits to overcome the
compensation inconvenience faced by the original median operator. Note that
it is possible to obtain I3 as the output when a = 2 while I3 was not one of the
values to be aggregated. It can also be observed that the operator, by means
of the a parameter, permits to obtain values between the minimum and the
maximum of the a;. In our case, the function moves from [y to l5. Moreover,
the function cannot result into values larger than the maximum of the a; or
smaller than the minimum of the a;. This fact also implies that the operator
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satisfies unanimity (if all sources agree in a value /;, the outcome is this very
value ;)

Proposition 1 CWOW — Median is an aggregation operator satisfying:
1. min(ay, - ,an) < CWOW — Median(ay,--- ,ay) < max(ag,--- ,an)
2. Unanimity CWOW — Median(l,1,--- ,1) =1 for alll € L

Nevertheless, this operator presents a drawback. The following proposition
establishes this negative property.

Proposition 2 The CWOW — Median does not satisfy monotonicity. This is,
it does not hold

CWOW — Median(ay,- -+ ,an) < CWOW — Median(al,--- ,a})
for some a; < a wherei € {1,--- ,N}

Non-monotonicity is a consequence of the fact of making the function acc
convex. Augmenting the values of acc for all the elements below the previ-
ous median value can violate monotonicity. This is illustrated in the following
example:

Example 2 Let us consider 16 information sources X = {x1,22, - ,Z16} giv-
ing information over a set L of 11 ordered categories L = {lo,l1,--- ,l10}. The
information supplied by the sources is as follows: 6 of the sources supply the
value ly and the other 10 supply the values l1,ls,--- ,l19. This is,

a = (lo,lo,10,10,10,10,11,12,+ - ,19,110)

To aggregate this values, the CWOW — Median is used. The corresponding
acc function is given in the first row of Table 4. The application of the simple
median to these values is given in the last column of the first row. The second
and the third row of this table gives the acc' and acc” functions. This is, the
convez function and the normalized function (the one that add to one). The last
column of these rows shows the value of the CWOW — Median: ls.

Let us now consider that one of the sources that supplied the category lo (say
z1) changes the value by ls. The corresponding a' vector is now:

a' = (Ia, 1o, 1o, 10, 1o, Lo, Iu,y 1o,y - -+ 4 19, Lig)

Note that this vector is momnotonic increasing in relation to the previous
vector a because, a} > a; for alli € {1,--- ,N}.

The corresponding acc function is given in the fourth row of Table 4. The last
column of this row gives the Median of the values. The median is a monotonic
function and it can be seen that in this case the final value is not modified by
the change of ly by ly. In the last two columns of this table, functions acc'
and acc” are displayed. The last column in the rows give the result for the
CWOW — Median function: ly.
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The example shows that monotonicity is not sastisfied because changing the
value a; = lp by a} = lo (and keeping all the others a} = a;), the outcome of
the function is /5 instead of I3 and thus violates the equation:

CWOW — Median(ay, -+ ,an) < CWOW — Median(a),--- ,aly)

The violation of the monotonicity condition is due to several factors (see
Table 4): (i) the replacement of the value Iy by two values instead of one in
acc', and thus incrementing the number of total values in the median from 16
to 17 (see denominators in rows acc’); (ii) the two additional values are lesser
than I3 and thus decrements the final outcome (note different values in columns
Iy and I in rows acc’). Both factors are caused by the process of making acc’
a convex function (in fact, incrementing the number of values /; smaller than
I3). Note that for the original Median function, the final aggregated value is not
modified (the function is indeed monotonic).

acc 6 1 1 1 1 1 1 1 1 1 1 I3
acc’ 6 1 1 1 1 1 1 1 1 1 1 I3
acc” | 6/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 I3
acc 5 1 2 1 1 1 1 1 1 1 1 I3
acc’ 5 2 2 1 1 1 1 1 1 1 1 la
acc” | 5/17 2/17 2/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 ls

Table 4: Example of non-monotonicity for the CWOW — Median

Nevertheless, although these examples do not satisfy the monotonicity con-
dition, it is clear that variations on the result are small (one label is changed by
a contiguous one) and can be accepted from the point of view that we are using
ordinal scales with no established semantics. In fact, the violation of the mono-
tonicity condition is found when for a category I; the acc”’ function (acc (1;))
is near the cutting point 0.5. Note that acc”(l2) = 0.5 and acc”'(I3) = 0.5625
for the a vector, and that acc” (I2) = 0.5294118 for a’. On the light of ordinal
scales as scales with some uncertainty (e.g. imprecision or fuzzy terms), we can
understand non-monotonicity results as errors in the limits of the meaning of
the category.

It has to be said that in general, it is possible to find examples of non-
monotonicity in which replacing a value [, by a larger value [, results in a large
change of the outcome. However, this requires a set L with a large number
of categories and a large set of sources, a situation that is not common when
dealing with ordinal scales (specially, the case of having a large set of categories).
This is illustrated in the following example:

Example 3 Let us consider a set X consisting on 1006 information sources,
each supplying o value in the ordinal scale L = {lg,l1,l2,--- ,l1000}. Let z;
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supply the value I; for i = 1,--- ,1000 and let x1001," - - ,Z1006 Supply the value
lo. Then, the CWOW — Median of these values is ls9s.

Let us consider now that 1001 replaces the value ly by the value lo59, then,
the CWOW — Median is l373.

As ls50 > lg, but l373 < l498, the monotonicity condition is not satisfied. In
this case, the number of categories between the original value and the new one
is large but the number of categories in the set L is also very large.

To have a better understanding of the situations in which the CWOW —
Median violates monotonicity (this understanding is required to apply the ag-
gregation operator properly), we have studied in detail different situations and
analyzed them to know whether the operator satisfies monotonicity or not.

We have considered two different scenarios and randomly generated several
instantiations. In each instantiation, two monotonic vectors a* = (al,--- ,ak)
and a® = (ai,--- ,a%) (i-e., aj < a?) were generated and the CWOW — Median
was applied to them. Monotonicity was then checked.

In both scenarios, we consider an ordinal scale consisting on [ categories
(I = R+ 1 using the notation L = {lo,l1,--- ,lg} used so far), N information
sources and that the difference between vectors a' and a? is that K-information
sources have changed their value in a' by a larger one in a? (this is, |[{a;|a} #
a?}| = K). For each scenario, m random instantiations have been considered.

The two scenarios studied are the following ones:

1. All the sources changing a value in a! to another one in a? had the same
value in a! and change to the same value in a?. This is, for all i such that
a} # a3, a} = a and a7 = (3. In this case, if for a given parameterization
K, the number of categories aj = «a is K' wit K' less than K, only K'
sources will change their value.

2. Sources that change their values can have different values both in a' and
in a?.
According to all this, for each of the scenarios, an example is defined accord-

ing to four parameters (I, N, K, m). For evaluating the aggregation function, we
have considered the following parameters for the two scenarios:

e The number of categories: I = 2,3,4,5,6,7,8,9,10, 20, 30, 50,100
e The number of sources: N = 5,10, 15, 20, 25, 30, 40, 50, 75, 100, 200, 500, 1000
e The number of changed values: K = 2,3,4,5,10,100

Experiments were run either 1000 or 10000 times (m = 1000 or m = 10000).
The results of the experiments are displayed in Tables 5 — 17. Tables show
the number of cases that violate monotonicity. This is, each cell of the table
indicates how many times the monotonicity condition was violated when m
experiments were executed.

These experiments were programmed in CLisp (running on RedHat 6.2 for a
PC) and for scenario 1 with K = 2 and m = 10000 it took 3 hours to compute all
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NN | 5 10 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 g 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 29 17 5 3 2 1 1 0 0 0 0 0 0
5 19 43 28 25 29 21 12 13 3 0 1 0 0
6 3, 69 53 34 3 22 26 18 15 13 15 7 5
7 37 104 93 80 66 52 48 84 84 16 4 0 0
8 39 108 105 103 79 7 45 38 2 17 15 10 1
9 41 168 186 181 105 100 75 66 52 46 14 3 0
10 | 27 146 133 182 98 141 77 70 49 88 28 22 16
20 | 20 211 214 185 192 216 183 183 127 131 69 28 20
30 4 148 212 191 196 235 236 23, 188 179 104 59 28
50 | 2644 3592 3617 3789 3750 3714 3766 3728 3667 3677 3632 1933 1115
100 | 0 27 220 697 1550 2695 5230 6649 6934 6846 6886 8168 111

Table 5: Experiments for scenario 1 with K = 1 (number of changed values
from a! to a?). Rows correspond to different number of labels (parameter 1)
and columns correspond to different number of information sources (parameter
N). 10000 tests have been performed for each experiment

examples for all considered pairs of N and [ (this is the completion of Table 6).
Instead, the computation of the Table 17 (scenario 2, K = 100 and m = 10000)
took about 6 hours.

From the tables, it can be observed that for a small number of categories
the number of monotonicity violations is small (less than 3%). This number
is even smaller for the second scenario. The experiments also show that for
the second scenario when the value K increases, the percentage of violations
decreases (specially for the experiments with a small number of categories — see
for example Tables 16 and 17 and compare with Table 12). For the first scenario,
conclusions are not so clear, but it seems that larger values of K, the number of
violations decreases for a small number of information sources and increases for
a larger number of sources. For example, for K =1 and N = 10 and N = 15,
the cells for I = 10 are about 140 while for K = 5, the same cells are about 100,
for K = 20 they are about 85, for K = 100 they are also about 85. Instead, the
corresponding cells (I = 10) for N =40 and N = 50 are, respectively, for K =1
about 75, for K = 5 about 148, for K = 10, 127 and 164, for K = 100, 140
and 178. Thus, the number of violations tends to decrease for a small number
of sources.

Worst cases are found for large number of categories (30 or larger). In this
case, a small variation of the input data implies a large modification of the
convex function (this is the case of Example 3). For example, Table 5 shows
that for 50 categories and 5 information sources there is 26.44% percent of the
cases that do not satisfy monotonicity, for 100 categories and 75 sources we have
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NN | & 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 15 26 5 2 2 3 0 0 0 0 0 0 0
5 17 38 29 28 30 27 26 19 7 3 0 0 0
6 31 54 58 67 59 37 38 28 16 11 28 7 15
7 23 72 91 70 79 81 58 62 36 27 6 0 0

8 41 62 84 101 92 106 68 76 54 43 37 20 7
9 21 90 110 106 133 109 112 94 84 65 31 2 0
10 27 94 111 118 146 137 99 104 82 73 39 19 16
20 14 112 109 146 206 218 2183 224 185 182 111 68 35
30 6 74 97 118 181 215 246 269 223 257 177 92 51
50 734 1010 2922 3625 3729 3705 3730 3770 3744 3710 3809 3688 2318
100 0 0 3 3 9 12 50 123 1949 6228 6905 6647 616

Table 6: Experiments for scenario 1 with K = 2. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment

almost 70% percent of the cases.

From the point of view of aggregation for prototype selection, the experi-
ments show that the proposed aggregation method is a valid alternative because
the usual number of categories is usually smaller than 15. For example, in the
experiments in [3], the average number of categories is 13, only 30% of the vari-
ables have more than 15 categories and the variable with a larger number has
25 categories. In addition, in the particular case of clustering for microaggre-
gation [3], [4], the number of values to be aggregated is usually below 10. In a
general clustering problem, this number will be quite larger but the number of
categories will be about the same.

An additional element to be taken into account is that in our experiments
the values are generated randomly and, thus, a given vector a can have very
dissimilar values. However, when applying aggregation to clustering, the values
would be similar. In fact, they have to be so because they are put together
in the same cluster because they are similar. The effects of non monotonicity
would be smaller in this latter case. Recall that non monotonicity is caused by
the introduction of new elements in the convex function acc’, therefore, when
values are similar, the number of added elements will be small.

5 Conclusions
In this work we have reviewed existing aggregation operators in ordinal scales for

their application to prototype construction. We have analysed their drawbacks
and we have proposed two general procedures to solve them. Then, we have
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applied these procedures to the median to define the CWOW — Median. We
have analyzed some of the properties of this operator. We have seen that it
satisfies unanimity and that the value belongs to the interval defined by the
minimum and maximum of the values. We have shown that the procedure does
not satisfy monotonicity. We have shown with an example that the modification
of a single label does not modify in a substantial way the outcome (a label is
changed by the contiguous one). Only for an example with a large domain L,
the outcome of the CWOW — Median is modified substantially. Experiments
have confirmed that violations of monotonicity are not relevant for a small
number of categories and of sources. This is the typical case in clustering and
more specially in microaggregation. Experiments show that monotonicity is not
satisfied for a large proportion of scenarios when the number of categories is
large. However, this is not a common situation.

As in usual applications the number of categories in L is not large, and the
non-monotonicity can be understood from the point of view of the uncertainty
attached to categories (e.g. imprecision), we consider appropriate the use of
CWOW-Median for prototype selection. In particular, because it allows com-
pensation a property that the other operators lack, and also because it allows a
parametric definition (through the quantifier) that allows the user to customize
the application or to apply learning procedures. In particular, and as shown in
[3], parameterization is a relevant aspect in microaggregation to find the best
tradeoff between information loss and the risk of releasing unprotected data.

NN | 5 10 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 g g 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 28 25 6 4 3 1 1 0 0 0 0 0 0
5 29 54 86 45 41 87 84 6 1 0 0 0
6 20 47 83 50 61 56 8, 86 32 25 25 15 11
7 29 67 8 90 100 97 89 11 60 48 14 1 0
8 25 75 73 89 106 95 81 8 55 5, 49 32 20
9 20 80 106 105 129 116 127 113 98 68 36 3 1
10 | 28 8% 105 130 104 136 124 135 96 8 81 39 26
20 | 11 98 77 121 177 159 181 205 219 201 130 85 52
30 | 10 55 108 99 131 185 208 228 249 272 225 110 63
50 | 722 322 1091 2263 8156 8524 8706 8690 8755 3672 3725 3787 3325
100 0 00 0 4 3 17 15 17 32 209 6882 6866 2766

Table 7: Experiments for scenario 1 with K = 3. Rows correspond to number
of labels and columns correspond to number of information sources. 1000 tests
have been performed for each experiment
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=

5 100 15 20 25 30

I\ 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 23 25 7 9 5 2 0 0 0 0 0 0 0
5 25 40 30 51 30 49 31 25 6 7 0 0 0
6 25 59 58 12 55 60 48 54 46 35 40 20 18
7 20 70 T2 66 85 105 80 86 63 45 9 0 0
8 2 69 80 84 102 109 104 110 75 79 37 31 25
9 29 82 110 110 138 130 135 137 102 82 44 3 0
10 26 88 95 114 112 181 163 111 131 95 53 52 43
20 11 9% 101 123 177 186 196 212 219 217 154 87 62
30 7 65 110 103 141 162 168 247 292 289 261 142 98

50 740 278 158 322 950 1936 38517 3711 3728 3864 3843 3754 3727
100 1 0 0 3 2 11 17 11 29 26 3988 6839 5879

Table 8: Experiments for scenario 1 with K = 4. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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NN | 5§ 100 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 26 24 11 4 3 1 0 0 0 0 0 0 0
5 18 40 19 46 43 56 45 42 18 18 0 0 0
6 31 67 8 6 78 81 84 93 129 152 222 230 265
7 26 58 95 98 97 107 95 121 123 108 102 71 10
8 22 65 68 90 102 106 125 150 172 165 257 375 341
9 30 70 95 105 150 184 144 164 160 191 164 173 103
10 25 84 99 123 118 147 140 178 181 199 256 385 47
20 13 113 118 123 141 150 179 196 271 304 308 3874 466
30 6 67 100 105 146 178 196 239 251 330 407 453 437
50 684 257 98 68 39 2 40 52 18 71 118 202 322
100 0 3 0 5 6 7 11 19 26 28 42 33 16

Table 11: Experiments for scenario 1 with K = 100. Rows correspond to number

of labels and columns correspond to number of information sources. 10000 tests

have been performed for each experiment
I\N 5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 30 6 3 0 0 1 0 0 0 0 0 0 0
5 20 13 8 9 7 18 8 8 2 4 0 0 0
6 26 33 29 18 21 8 10 10 6 7 4 5 2
7 28 76 59 36 33 38 32 22 16 21 4 0 0
8 36 108 73 68 47 40 30 15 19 16 12 11 8
9 48 158 100 87 94 70 62 43 41 35 19 0 0
10 58 158 122 114 93 80 74 59 61 31 20 26 11
20 27 308 314 282 318 262 252 239 170 147 92 42 31
30 11 209 346 331 828 364 329 841 314 250 161 75 47
50 3392 4476 5033 5024 4949 4697 4514 4271 8864 3562 3152 2308 1410
100 1 15 131 367 783 1277 2318 2883 3591 6257 5910 4874 458

Table 12: Experiments for scenario 2 with K = 2. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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NN| 5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 22 30 15 8 0 2 0 1 0 0 0 0 0
5 26 43 42 8 27 83 82 17 9 6 0 0 0
6 25 68 61 69 49 59 41 84 41 18 22 21 9
7 29 63 67 105 94 8 8 11 5T 44 15 0 0
8 27 76 8 108 105 93 87 18 59 61 39 34 26
9 26 90 94 122 116 128 118 118 96 70 43 2 0
10 | 29 8 95 112 137 132 184 123 9% 54 5/ 89 38
20 | 18 77 97 145 156 168 204 249 224 214 128 U 50
30 | 4 68 119 115 146 177 191 227 268 805 237 135 11
50 | 688 337 1069 2251 3178 3548 8733 8176 8790 3713 3760 3826 3454
100 0 0 3 3 2 6 11 18 33 202 6891 6910 2707

Table 13: Experiments for scenario 2 with K = 3. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment

NN | 5 10 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 11 0 0 0 0 0 0 0 0 0 0 0 0
5 10 4 1 1 1 1 0 0 0 0 1 0 0
6 13 10 8 3 5 3 5 0 3 1 3 1 3
7 19 28 16 9 10 5 10 12 5 3 2 0 0
8 0 47 21 17 1 12 6 9 5 6 10 4 3
9 3% 65 60 %0 37 28 88 85 83 17 7 3 0
10 | 52 110 56 52 46 49 32 28 20 16 18 6 9
20 | 54 405 841 804 252 249 28, 208 167 142 80 42 25
30 | 22 817 463 423 460 446 38, 368 323 292 177 95 57
50 | 8284 4136 5440 5899 5981 5856 5569 5104 4530 4276 3678 2833 1930
100 | 1 6 48 110 25, 482 1078 1499 219 3961 6682 661, 2566

Table 14: Experiments for scenario 2 with K = 4. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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NN| 5 10 15 20 25 80 40 50 75 100 200 500 1000
) 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 9 0 1 0 0 0 0 0 0 0 0 0 0
5 7 2 1 4 1 0 0 0 1 1 1 0 0
6 7 2 1 3 0 3 0 0 0 1 0 1 2
7 28 30 5 2 7 8 1 6 6 5 2 1 0
8 26 28 19 7 11 7 1 9 6 4 3 4 1
9 0 47 %0 21 20 17 22 18 8 10 6 1 0
10 | 41 59 38 8% 29 14 17 16 13 1 5 4 6
20 | 52 857 295 817 261 208 199 186 136 129 79 45 26
30 | 48 856 496 443 462 4389 415 383 305 256 175 90 60
50 | 3012 3727 5261 5912 6029 6044 5847 5496 4798 4349 3798 3036 2156
100 | 0 4 28 60 164 824 704 1091 1686 3032 6647 7012 337

Table 15: Experiments for scenario 2 with K = 5. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment

I\N 5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0 0 0 0 0 0
7 3 2 0 0 1 0 0 0 0 0 0 0 0
8 1 3 0 1 1 0 1 2 0 1 0 0 0
9 10 8 5 1 1 1 2 0 1 1 2 0 0
10 21 14 10 5 2 2 3 3 3 1 2 2 2
20 58 284 148 169 128 120 62 69 48 50 42 23 21
30 41 406 437 858 337 832 269 242 208 163 123 66 41
50 2131 2121 3429 4569 5242 5809 6140 6009 5380 4970 4116 3359 2624
100 4 0 0 3 7 24 76 151 893 970 3301 8344 6666

Table 16: Experiments for scenario 2 with K = 10. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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A\NN| &5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 o o 0 0 0 0 0 0 0 0 0
3 0 0 o o 0 0 0 0 0 0 0 0 0
4 0 0 o o 0 0 0 0 0 0 0 0 0
5 0 0 o o o0 0 0 0 0 0 0 0 0
6 0 0 o o o0 0 0 0 0 0 0 0 0
7 0 0 o o o0 0 0 0 0 0 0 0 0
8 0 0 o o 0 0 0 0 0 0 0 0 0
9 0 0 o o 0 0 0 0 0 0 0 0 0
10 0 0 o o 0 0 0 0 0 0 0 0 0
20 0 0 o o o0 0 0 0 0 0 0 0 0
30 0 4 1 0 1 0 0 0 0 0 0 0 1
50 416 286 91 39 20 10 13 83 954 2860 4747 3406 3093
100 5 0 o o0 0 0 0 0 0 0 0 0 21

Table 17: Experiments for scenario 2 with K = 100. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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Extending Microaggregation Procedures using
Defuzzification Methods for Categorical Variables

Josep Domingo-Ferrer, Vicen¢ Torra

Abstract— Defuzzification is one of the fundamental steps
in the development of fuzzy knowledge based systems.
Given a fuzzy set y over the reference set X, defuzzification
applied to y returns an element of X. While a large number
of methods exists for the case of X being a numerical scale,
only few methods are applicable when X corresponds to a
categorical scale.

Aggregation procedures have been extensively used in de-
fuzzification in numerical scales. This is so because defuzzi-
fication has been studied as equivalent to the computation
of an expected value. In this work we present the reversal
approach, we study defuzzification procedures for their ap-
plication to aggregation. We focus on the development of
defuzzification methods for the case of X being an ordinal
scale. This is, X is a set of finite values in which a total or-
der is defined. Our ultimate goal is to apply these methods
to microaggregation (a Statistical Disclosure Risk).

Index Terms— Defuzzification, ordinal scales, aggregation
procedures, selection procedures.

I. INTRODUCTION

Fuzzy knowledge based systems (see [1] and [2] for de-
tails) are one of the most successful applications of fuzzy
sets [3]. These systems are rule based systems in which the
predicates of the antecedents and consequents are defined
in terms of fuzzy sets. This is, given a fuzzy rule of the
form

if XisAand ...and Yis Bthen Zis C

X, Y and Z are variables and A, B and C are fuzzy sets
on the reference sets of X, Y and Z. We will denote the
reference set of a variable X by Dx. For example, if X
corresponds to temperature, A can correspond to a fuzzy
set describing values near zero degrees, in this case, the
reference set Dx corresponds to real numbers or a subset
of them (Dx = R).

Given a piece of information on the variables of the an-
tecedent (their value or a fuzzy set describing possible val-
ues), the information is propagated into the conclusion to
get information about the possible values of the variable
in the conclusion. In the case above, given values for vari-
ables X,---,Y, a system would obtain possible values for
Z. These values are usually described by means of a fuzzy
set on the reference set of Z (i.e., Dz). If no information
can be inferred, the set of possible values for Z is usually
set equal to the empty set. In fact, this corresponds to dis-
junctive systems (conjunctive systems make, in this case,
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the conclusion equal to the whole set [1]). In this way, the
conclusion of each rule takes into account available infor-
mation (the values of the variables) and the relevance of
this information to the rule at hand (in which degree the
antecedent is fulfilled).

Most fuzzy knowledge based systems correspond to one
stage fuzzy systems. These systems are defined by means
of a flat set of rules, all having the same set of variables in
the antecedent and the same variables in the consequence.
Then, in a given instant of time, all rules are applied and
the conclusions of all rules are combined to build the con-
clusion of the system. This combined conclusion corre-
sponds to a fuzzy set (we will denote this combined fuzzy
set by pc). A final step of the system is defuzzification.
This is to transform the fuzzy set uc into a value in the
reference set of the conclusion variable. For the example
above, this is: defuzzification(uc) € Dz

When studying defuzzification methods an important as-
pect to be taken into account is the scale of the reference
set. Three main types can be distinguished:

Numerical: The conclusion is either a real number or a
natural number.

Ordinal scale: The conclusion is categorical (e.g., linguistic
labels) and values are ordered (there is a total relation over
the categories).

Nominal scale: The conclusion is categorical but there is
no ordering relation between categories.

While most control systems fall into the first type, most
configuration systems fall in the second and third type (e.g.,
the one in [4]).

At present there exists a large number of defuzzification
procedures for numerical scales, while existing methods for
ordinal scales are more limited. In this work we study
defuzzification methods for ordinal scales. Our interest in
these methods is for their application to the aggregation of
values (fusion of information) in these scales.

In fact, usually the relationship between aggregation (fu-
sion) and defuzzification is observed in the other direction.
This is so because, two main approaches are considered in
defuzzification (this is explained in more detail in the rest
of the paper):

Element selection: From the reference set of the conclusion
variable, one element has to be selected. This selection has
to be based on the combined fuzzy set. In the example
above, this means to select a value from the set pc for the
variable Z in the reference set D.

Aggregation: The defuzzified value corresponds to the ag-
gregation of the available information. This can be seen as



equivalent to returning an expected value of the combined
fuzzy set.

According to the second approach, almost all aggrega-
tion procedures can be used for defuzzification. This is
particularly interesting in the case that the variables are
defined in numerical scales due to the large number of ag-
gregation procedures. Also, the selection of an appropriate
procedure makes possible the customization of an applica-
tion. In the case of variables on ordinal or numerical scales,
this approach is not as appropriate because there are only
a few applicable aggregation procedures. Nevertheless, the
relationship can be studied in the reversal direction to de-
velop new aggregation procedures, and at the same time
extending defuzzification methods.

II. AGGREGATION PROCEDURES IN ORDINAL SCALES

The development of aggregation procedures for ordinal
scales is briefly reviewed in [5]. A more detailed review that
also analyzes the properties of the procedures in the view of
prototype selection in clustering is given in [6]. It has to be
noted that, in some sense, the properties of a defuzzification
method are similar to the ones of the methods for selecting
the prototype of a class and, thus, the analysis in that work
is relevant here.

In the rest of the paper we assume that the values to be
aggregated (or the domain X in the case of defuzzification)
are the following ones: L = {lg,---,lg} where lg <p l; <g,
<o <y IR

Aggregation procedures in ordinal scales can be classified
into three main classes according to the semantics under-
lying the categories (or linguistic labels) in L:

Ezxplicit quantitative or fuzzy scales: There is a function
that assigns to each value I; a value in a numerical (or
fuzzy scale). Aggregation operators can be defined on L
according to this translation function. An operator of this
class is described in [5].

Implicit numerical scale: In this class of operators the
translation is not explicitly defined but it is implicitly as-
sumed. Two operators of this class are the Linguistic OWA
[7] and the Linguistic WOWA [8].

Operating directly on qualitative scales: The operators of
this class do not assume the existence of any translation
function either implicitly or explicitly. Operators are only
based on operators that can be directly defined in the ordi-
nal scale. Example of operators that can be defined in the
ordinal scale are the minimum and the mazimum (that
rely on the relation <) and also t-norms and t-conorms
(because these operators can be defined axiomatically — see
9).

When we restrict to the third class, the number of exist-

ing operators is small. In fact, four main families can be
distinguished:
Plurality rule: This function selects the set of most fre-
quent elements. Weighted plurality rule can also be de-
fined. In this case, the most frequent elements are the ones
that accumulate larger weights.

Median and order statistics: This function selects the el-
ement that occupies the central position when all the ele-
ments to be aggregated are ordered. A weighted median
can also be defined. We classify order statistics procedures
in this class, because they correspond to the selection of
those elements that occupy other positions (e.g., first, sec-
ond or last) than the central one.

Sugeno integral: This integral can be interpreted as an
aggregation operator. In this case, values are aggregated
taking into account a fuzzy measure. This fuzzy measure is
used to measure the importance of the information sources
(the sources that supply the values to be aggregated). It
is well known that the Sugeno integral generalizes several
other aggregation operators as the weighted minimum and
the weighted maximum.

Ordinal weighted mean: This operator is the ordinal
counterpart of the weighted mean. The definition of this
operator tries to mimic the definition of the numerical
weighted mean. Instead of addition and product, it uses
t-conorms and t-norms. Ordinal Choquet integral has also
been defined using the same approach.

Some of the difficulties underlined in [6] for the applica-
tion of these operators to prototype selection are the fol-
lowing ones:

1. Difficulty for defining the parameters by non experienced
users: QOperators like the Sugeno integral and the Ordinal
weighted mean that need that someone defines fuzzy mea-
sures or t—norms/t—conorms are not appropriate because
these parameters are not easy to define.

2. Inconvenience of mon-compensative operators: For
most reviewed operators, the result of the aggregation
should be one of the values to be aggregated. This means
that the average of a small and a large value cannot be a
value somewhere in between. Instead, compensation is al-
lowed in the numerical case. E.g., the aggregation of 0 and
1 is 0.5 when the aggregation operator is the arithmetic
mean.

3. Difficulty of defining parametric operators: Parameter-
ization of existing operators is difficult. Some of the oper-
ators require weights in ordinal scales. Fuzzy measures are
even more difficult to define because they are defined over
parts of the sources and, here, the only information is the
membership value for each element.

Taking all these aspects into account it seems that the
most appropriate aggregation procedure for prototype se-
lection is the median. However, it does not allow for com-
pensation and does not include any parameterization. To
overcome these two difficulties, the CWOW-Median was
defined in [6]. Its definition is as follows:

Definition 1: Let p : X = D C R be a weighting vector,
let @ be a non-decreasing fuzzy quantifier, then a mapping
CWOW — Mediang : LN — L is a Convex WOW-Median
of dimension N if:

CWMw(ay,---,an) = a iff acc"(a) > 0.5 > acc" (b)



where acc’”' is the WOW-weighting vector of (L, acc")
and Q, acc’(a) = acc'(a)/ )y acc'(b), acc'(a)
min(maxy, acc(b), maxssq ace(b)), ace(a) = ¥, P(5)
and where b is the element next to b in L. This is, b =
max{z|r € L,z < a}.

Where the WOW-weighting vector is computed accord-
ing to the following definition:

Definition 2: Let (ai,p;)i=1,8 be a pair defined by a
value a; and the importance of this value (the value
p;) expressed in a given domain D C RT, and let Q
be a fuzzy non-decreasing fuzzy quantifier. Then, the
WOW-weighting vector w = (w1,---,wn) for (a,p) =
((a1,-+,an),(p1,---,pNn)) and @ is defined as follows:

2 j<i Polj) 2 j<iPolj)
2 <N Po(j) 2 <N Poj)

where {o(1), ...,0(N)} is a permutation of {1, ..., N } such
that a,(;i—1) > ag(;) for all i = {2,..., N} (i.e. a,; is the
i-th largest element in the collection ay,...,an), and Q is a
non-decreasing fuzzy quantifier. This is, ) is a monotonic
function (i.e., @(a) > Q(b) for all a > b) such that Q(0) =0
and Q(1) = 1.

Ww; =

III. DEFUZZIFICATION PROCEDURES

In this section we review some of the defuzzification pro-
cedures. For more details see [12] and [10].

Defuzzification methods have been studied from different
perspectives. Yager [10] views defuzzification in the more
general framework of a selection problem. This is, selecting
an element using the information represented in the fuzzy
set. Additional knowledge can also be taken into account
in this selection (e.g. using constraints about values of
variables in [4]). This latter case corresponds, according to
Yager [11], to the so-called Knowledge based defuzzification.

To study the defuzzification process, Yager proposed a
general architecture. This is shown in Figure 1. Following
this figure, the output of the fuzzy rule based system is a
fuzzy set F' (we will use pr to denote its membership func-
tion). The defuzzification of this fuzzy set is achieved via
a two stage process. First, the fuzzy set F' is transformed
into a probability distribution P, and then one element
is selected from the probability distribution (two general
methods S1 and S2 - see below — are considered for se-
lection). In [11], Yager introduces an additional stage for
transforming the original fuzzy set into a transformed one
F' (with membership function pg+) using additional knowl-
edge.

Here we consider an hybrid approach consisting on only
two stages as in Figure 1 but in which the first stage (this is
called fuzzy set transformation) considers all the additional
knowledge, and its output F' can be another fuzzy set. The
second stage is named Element selection. This is shown in
Figure 2.

We now review some of the existing alternative ap-
proaches for the two stages of fuzzy set transformation and

Defuzzification

convert F Selection:
input |Rule | F intoa P S1=Expectation L
Base Probability S2=Random Experiment
Distribution
Fig. 1. Defuzzification process following Yager
Defuzzification
input |Rule | F Fuzzy Set F Element selection
Base Transformation N

Knowledge

Fig. 2. Our approach to the defuzzification process

element selection. The following two subsections are de-
voted to these aspects.

A. Fuzzy Set Transformation

Below we list some of the appropriate fuzzy set transfor-
mation processes. An alternative method based on cluster-
ing is described in [11].

Normalization: Membership values are scaled so that they
add to one. This is:

pr(z)
Y ziex HF(Ti)

pr (x) =
This process can also be understood as transforming the
fuzzy set into a probability distribution. The well-known
Center of Area method (see e.g. [12], [10] for its descrip-
tion) requires the application of this transformation.
Selection of most possible values: Objects z; in X with
a larger membership value are selected. Let Fiqp =
mazpr(x), then:

|1 if pup(z) = Free
pr (z) = { 0 otherwise

The Mean of Maxima method requires the application of
this transformation.
a-cut of the membership function: All values with a mem-
bership value less than a given a are disregarded.
_ [ pr(@) ifpr(z) >
pr(z) = { 0 otherwise

This transformation is applied to avoid the inclusion of
values that have a possibility below a given threshold.

As these definitions are functionally defined, composition
of transformations are possible in a single defuzzification
method. For example, we can apply a given a-cut and then



normalize the resulting membership function to obtain a
probability distribution that disregards some values with a
low possibility.

B. Element Selection

For element selection, Yager [11] made the classification
given below. The two classes considered roughly corre-
spond to the two approaches for defuzzification informally
reviewed in the introduction (and to S1 and S2 in Figure
1): element selection and aggregation.

Blending methods: The defuzzified value is obtained as
the combination of available solutions. These methods usu-
ally use some kind of average to combine the solutions. Dif-
ferences between methods correspond to different ways of
averaging the values. For example, the following aggrega-
tion operators have been considered in the literature:

1. Arithmetic mean of the values: The Mean of Max-
ima can be computed using this procedure for element se-
lection.

2. Weighted mean of the values: Usually weights are
linearly proportional to the membership values in pr. This
would be the case of the Center of Area. The Mean of
Maxima can also be computed using this approach (in this
case, all weights are equal).

Celibate methods: They do not combine solutions but take
one of the elements of X as its solution. Some particular
examples of celibate methods are:

1. Random selection of one of the elements (with random
numbers following e.g. a Normal distribution).

2. Random selection with the probability of selecting an
element being proportional to its fuzzy membership value.
This is the RAGE (RAndom GEneration defuzzification)
family of methods [11].

IV. AGGREGATION AND DEFUZZIFICATION PROCEDURES

As seen in Section III, aggregation is one of the blending
methods for element selection. In particular, given a mem-
bership function pr on the (discrete) reference set X, the
defuzzification of ur can be seen as the aggregation of the
elements x; € X with respect to the weighting vector pr.
Thus, pr(z;) is interpreted as the weight of x;.

According to this, for a given measure scale (e.g., numer-
ical, ordinal, nominal), all aggregation operators in that
kind of scale that use as additional information a numeri-
cal weighting vector can be used for defuzzification.

The other relationship between aggregation and defuzzi-
fication procedures is that the latter can be seen as an
aggregation procedure when values are weighted. This is,
given a set of values aj,---,any (with a; € X) to be ag-
gregated with weights py,---pn (p; is the weight attached
to a;), the following “fuzzy set” on X can be defined:
A p(x;) = Ea,:au pj. Then, we can define the aggregation
of ai,---,an with respect to p1,---,pn as the defuzzified
value of p14,p.

V. EXTENDING DEFUZZIFICATION METHODS IN
ORDINAL SCALES

The architecture described above for defuzzification is
suitable for any kind of scale. However, while most mem-
bership transformations (as the ones described in this
work) are independent of the type of scale, this is not as
clear for selection methods. Note that blending methods
are difficult to apply due to the difficulty of defining aggre-
gation functions in ordinal scales. In particular, the arith-
metic mean and the weighted mean (enumerated above) are
not applicable because the values to be aggregated belong
to an ordinal scale.

To replace these numerical aggregation operators, the
operators described in Section IT can be used.

Without considering their properties, the (weighted) plu-
rality rule, the (weighted) median, the weighted minimum
and maximum and (after some adaptation) the ordinal
weighted mean can be applied. Instead, the Sugeno inte-
gral cannot. The main difficulty for the Sugeno integral is
that when applied in ordinal scales it needs a fuzzy measure
in the same ordinal scale than the values. This is difficult
to be defined and, moreover, the only available informa-
tion is numerical (the weights p;) instead of ordinal. The
second inconvenient us that the role of the fuzzy measure
is similar to the role of the weights, and both elements are
difficult to be combined.

Of these available and applicable operators, the most ap-
propriate one is the Median. The ordinal weighted mean
could be used, but it requires a definition of the t-norms
and t-conorms involved in the process. The inconvenience
of the plurality rule and the median is that they do not
allow for compensation. However, the plurality rule has an
additional inconvenient because a small variation on the
input data can provoke a large variation in the output.
Therefore, the result is not much stable. This is a draw-
back specially relevant when considering the application of
procedures to defuzzification.

The CWOW-Median can also be applied and has the
advantages of the Median and, moreover, it allows for some
compensation (recall that the median lacks this property)
and it also includes a parameterization by means of the
fuzzy non-decreasing quantifier Q. As shown in [6], this
parameterization allows a smooth transition between the
smallest value being aggregated and the largest one. This
is achieved with Q(z) = z® and, respectively, with « = 0
and a = 00

The CWOW-Median can be decomposed into two stages
to adapt it to the architecture for defuzzification described
in Section ITI. The decomposition of the operator into three
components (convex transformation, WOW transformation
and median) suggests new defuzzification methods. They
are built through the combination of these transformations
with alternative (other than Median) selection procedures.

In the next section, we introduce some new fuzzy set
transformation functions. Besides of the new transforma-



tions based on CWOW-Median, we introduce aggregation
based ones and we present an example using the Choquet
integral.

A. Fuzzy Set Transformation

We start with the two transformations corresponding to
the components of the CWOW-Median operators.
Convexr membership function: This is to permit the selec-
tion of a value with a null membership function if it is
located between elements with non-null membership func-
tions. This is solved making the fuzzy set a convex fuzzy
set. Given the fuzzy set ur, the convex fuzzy set ppr is
defined as:

pr () = min(max e (b), max (b))
WOW transformation: Given a non-decreasing fuzzy
quantifier (), the new membership function is defined as:

ngi pr(l;) B ( Ej<i pr(l5) )
EljeL pr(l;) leeL pr(ly)

Aggregation transformation: Given a membership func-
tion, the new membership function is defined using an
aggregation operator. This is, the value for a given cat-
egory is the aggregation of the membership of nearby cat-
egories. This is, given an aggregation operator C, we com-
pute pp (l;) by:

HE (lz) = C(/J/F (ll)a e a/J’F(lR))

The aggregation operator needs to be customized (via a
parameterization) for all categories ;. This can be better
expressed by:

pr (l;) = Ci(pr(l),-- -, ur(lr))

where C; means that the operator (or some internal pa-
rameters) depends on the label I;.

Note that if the aggregation operator is not customized for
each category, the result would be the same for all cat-
egories, because in our definition the function always re-
ceives the same parameters.

The transformation based on aggregation can be used to
make the membership function smoother. This transforma-
tion is similar to the smoothing of data in signal processing.
An example of using aggregation for fuzzy set transforma-
tion is described in subsection V-A.1.

pr (1) = Q(

A.1 Example: Choquet Integral for Defuzzification

As said above, the approach for using aggregation oper-
ators for fuzzy set transformation is to consider the new
value ugp (l;) for a given category l; as the aggregation of
the value pr(l;) with the values pp(l;) for j # i. To com-
pute this value, we use the Choquet integral. The Choquet
integral is a numerical aggregation operator that aggregates
some values with respect to a fuzzy measure.

Definition 3: A fuzzy measure p on a set X is a set func-
tion p : p(X) — [0,1] satisfying the following axioms:
(i) p(®) =0, p(X) =1 (boundary conditions)

(ii) A C B implies pu(A) < p(B) (monotonicity)

Fuzzy measures replace the axiom of additivity in proba-
bility measures (u(AUB) = u(A) + u(B) when ANB = )
by a more general one: monotonicity. Thus, probability
measures are also fuzzy measures. Fuzzy measures are used
in Choquet integrals to express the importance of a set of
information sources and their redundance and complemen-
tariness. When additivity is not satisfied, it means that the
importance of a set is not the addition of the importance
of the elements by themselves. In our case, as we aggre-
gate the membership values of the categories, the measure
corresponds to the importance of the category and their re-
lationship with other categories. This can express whether
a category can be aggregated with another one or not.

The definition of the Choquet integral follows:

Definition 4: Let p be a fuzzy measure on X. The Cho-
quet integral of a function f : X — R with respect to u is
defined by:

(©) [ 1= Y- (7wu) = Faas-n)DalAso)

where f(z,(;) indicates that the indices have been per-
muted so that 0 < f(ws(l)) < < f(.Z's(N)) < 1,
As(z’) = {xz(l), ...,:cs(N)} and f(xs(o)) =0.

In our case, and according to the remark in the previous
section that the aggregation operator has to be parameter-
ized in a convenient way for each category, we adapt the
Choquet integral to compute the membership of the cate-
gory l; (this is, to compute the value ug-(l;)) as follows:

Definition 5: Let p, be a fuzzy measure on X for cate-
gory l;. The Choquet integral of the membership function
pr : X — R with respect to y;, is defined by:

pr (1) = (e (ls) = pr(ls-1)) i (As))

j=1

where f(z,;)) indicates that the indices have been per-
muted so that 0 < f(zyq)) < < flzgny) <1,
Ay = {Zs()s - Ts(v) } and f(z4(0)) = 0.

To make the integral applicable, we need a fuzzy mea-
sure. This measure depends on our prior knowledge about
the categories, and, as said, is different for each category
I; (we denote this measure by gy, as above). In our case,
we propose the following fuzzy measure (the measure is
defined in terms of its Mobius transformation my;, ):

Given a category [; € X and a constant K € [0,1], we
define the Mobius transform my; of the fuzzy measure py,
as follows:

K ifA=1;
my,(A) =< K/|A| ifl; € A and A is convex
0 otherwise



with a convex set A, we mean a set such that for all a, b
in A, all the values ¢ such that a < ¢ < b also belong to A.

The rational of this measure is that the only sets A to
be taken into account when computing the membership
value of the category I; are the ones that are connected with
l;. This is, if a set contains I; with [; > I; but does not
contains a category in between, the set is not considered.
The relative importance of a set is larger for smaller sets,
and the maximum importance is given to the set with the
category ;.

To avoid that pg:(l;) > 1, we need that the fuzzy
measure defined above is normalized in the sense that
p; (X) = 1. This can be achieved in two ways. The sim-
plest way is to define an alternative Mdbius transform as
follows:

my,(B) =m,(B)/ ) mi,(4)
ACX
and use this function to compute the measure y;;. Recall
(see [13]) that this is achieved as follows:

i (B) = Yy mi, (A)
ACB
An alternative way is to use the same normalization fac-
tor for all fuzzy measures y;;. This means to define the
normalization factor (N F) as follows:

and define

my,(B) = my,(B)/NF

The first normalization approach means that when
pr(z) = o for all z € X, then pp(z) = a for all z € X.
Thus, all elements are equally possible after transforma-
tion.

The second approach is more appropriate when in a con-
stant membership function (as above, pup(z) = a for all
z € X)) we are more interested in central elements of X. In
other words, this means that a given x; not only receives
support from the z; itself but also from contiguous val-
ues z;+1 and z;—1. In this sense, extreme values have less
support because they have only one neighbor. The same
comment applies to extreme values of convex membership
functions.

VI. EXTENDING AGGREGATION OPERATORS IN
ORDINAL SCALES

The new defuzzification processes introduced in Section
V define, when combined with the selection processes in
Section III, some new defuzzification procedures. These
procedures are suitable, according to the transformation
found in Section IV, for aggregation. In particular, the
use of RAGE selection introduces several new aggregation
operators.

Some examples of these new operators are the following;:
e The combination of convex membership function and the
RAGE selection to define the Convex-RAGE defuzzifica-
tion process.
e The combination of the convex membership function, the
WOW transformation and the convex RAGE leads to the
CWOW-RAGE defuzzification method.
e The combination of convex membership function, the
WOW transformation and the median leads to the
CWOW-Median.
e The Choquet transformation (aggregation with fuzzy
measure) and the median would lead to the Choquet me-
dian.

VII. CONCLUSIONS

In this work we have considered defuzzification methods
based on the architecture described by Yager in [11]. We
have reviewed transformation functions and methods for
element selection. The combination of one element of each
stage leads to several defuzzification methods. All these
methods can also be seen as aggregation procedures. In
particular, the use of random selection procedures in com-
bination with membership function transformation proce-
dures lead to new aggregation operators.
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OWA operators in data modeling and
re-identification

Viceng Torra

Abstract— This paper is devoted to the application of ag-
gregation operators and to the application of OWA opera-
tors to data mining. In particular, we consider two appli-
cation of OWA operators in this field: model building and
information extraction. The latter application is oriented to
the re-identification procedures.

Keywords— Aggregation Operators, Weighted Mean,
OWA Operators, Learning Models, Re-identification Meth-
ods, Record Linkage, privacy preserving data mining.

I. INTRODUCTION

Information fusion techniques, in general, and aggrega-
tion operators, in particular, are currently being used in
several scientific fields. In fact, their use is rapidly increas-
ing because, on the one hand, data is gradually obtained
in an easier way and, on the other hand, computational
power has largely increased so that systems that combine
information from several experts or sensors are nowadays
feasible. Even more, it is also possible to compute several
solutions using different approaches and then combine the
alternative solutions. This is the case of bagging, boost-
ing and related approaches used for building data models
in machine learning. In these approaches, several models
are built using different mechanisms and, then, a decision
making module (e.g. voting [16], [2], the weighted mean
[17] or the OWA operator [42]) is put on top of the models.

In general, in the field of artificial intelligence, data fu-
sion techniques are mainly used for two main purposes (i)
when a system has to make a decision, or (ii) when it needs
a comprehensive representation of its domain.

In the first case, an alternative has to be selected or built
from several ones. The typical case for selection is to con-
sider several criteria for each alternative (this corresponds
to a multi-criteria decision-making problem) and the best
alternative is usually chosen [27] in a two phase process:
(i) the aggregation of the degree of satisfaction for all cri-
teria, per decision alternative; and (ii) the ranking of the
alternatives with respect to the global aggregated degree of
satisfaction. Instead, when the alternative has to be built
from the existing ones, fusion corresponds to the whole
building process and it has to consider the importance and
reliability of the alternatives and of the approaches used
to build these alternatives. Plan merging can be seen from
this point of view.

In the second case, a system builds the representation of
its environment from some background knowledge embed-
ded in the system and some knowledge supplied by some in-
formation sources (e.g. experts or sensors). Naturally, the

V. Torra is with the Institut d’Investigaci6é en Intel-ligéncia Artifi-
cial - CSIC, Campus UAB s/n, 08193 Bellaterra, Catalunya, Spain.
E-mail: vtorra@iiia.csic.es

knowledge has to be “reliable” and extend on the whole
domain of system’s actuation. However, the information
supplied by a single information source is often not reliable
enough and also too narrow in relation to the working do-
main. In this case, the information provided from several
sensors or experts are combined to improve data reliability
and accuracy and to include some features that are impos-
sible to be perceived from individual sensors. Note that
information fusion for knowledge representation can be ei-
ther applied at the time of defining the background knowl-
edge (e.g. using several experts’ knowledge) or at run-time
(either combining different pieces of new information or
combining some new information with some knowledge al-
ready established in the system).

Nevertheless, other uses of data fusion techniques are
conceivable in the artificial intelligence field. In particular,
fusion is useful in data mining and knowledge discovery
for two types of applications. On the one hand, aggrega-
tion operators and, in general, any data fusion model, are
suitable for building data models. This capability relies on
a result published in [34]. In this work, it is proved that
a model defined in terms of a hierarchy of quasi-weighted
means (a kind of aggregation operator — see [12] or [39] for
details on the operator) is a universal approximator and,
as such, it can be used for representing any arbitrary com-
plex function. Therefore, given a data set it is possible to
build a model of this data set using aggregation operators.
On the other hand, aggregation operators can be used to
extract useful information from raw data and, thereafter,
other programs can use the structures that otherwise would
remain implicit.

In this work we consider both approaches: the use of
aggregation operators to build data models, and its use to
extract implicit information. In the former case, due to
the large number of aggregation operators we concentrate
in some of them for which learning models are simple (small
cost) and, thus, applicable to data mining. In particular,
we focus on the OWA operator [47]. In relation to the lat-
ter case, we show an application to the re-identification of
individuals in data files with non-common variables. We
focus on the use of aggregation operators to extract im-
plicit information from files and their application to re-
identification.

The structure of this paper is as follows. In Section II, we
review the state of the art of the two approaches. Then, in
Section I we review some definitions that are needed later
on in this work. Section IV is devoted to describe a method
to determine models for quasi-weighted means. Section V
corresponds to the use of aggregation operators to extract
information and its application to re-identification. The



work finishes in Section VI with some conclusions.

II. STATE OF THE ART

In this Section we first review recent work on the use of
aggregation operators for building models. Then, we give
an overview of re-identification algorithms.

Aggregation operators have been widely studied. See,
e.g., 4], [19], [40] for a detailed state-of-the-art description
of the field. See [46] for a recent overview on aggregation
operators.

A. Aggregation operators for building data models

Theorem 1 in [34] establishes that hierarchies of quasi-
weighted means are universal approximators. This result
implies that quasi weighted means in particular, and aggre-
gation operators in general, are suitable tools for modeling
data and, as a consequence, methods can be developed to
build models for complex data. When efficient tools are
developed, methods can be used for large data bases.

At present, methods to determine the suitable aggrega-
tion model have been focused on mechanisms to determine
the parameters of the operator once the aggregation oper-
ator is selected. Several approaches have been developed
in the last years. They can be broadly classified in two
groups.

On the one hand, there are some methods based on the
assumption that there exists an expert that supplies crucial
information that is used later on to extract the parameters
of the selected aggregation function. This is the case of
Saaty’s Analytical Hierarchy [28] process (used to deter-
mine the weighting vector of a weighted mean). A similar
approach is the one followed by O’Hagan in [22] to deter-
mine the weighting vector of the Ordered Weighting Av-
eraging (OWA) operator. He requires that a user supplies
the so-called orness, a measure of how much large values
influence the outcome of the operator. This method was
further developed in [5].

On the other hand, there are some methods that do not
require the presence of an expert but the existence of a set
of examples. In this case, an example consists on the input
values (i.e., values to be aggregated) and the expected re-
sult (i.e., the value that the model estimates). From these
examples, the parameters of the operators are inferred and
the model is fitted on the data. This approach is rooted
on estimation theory where two random variables X, Y
are considered such that Y is said to depend on X when
the distribution Y| X is different from the distribution Y.
This is, the distribution posterior to observation is different
from the a priori one. Then, a model is built to estimate
the value of Y such that the variance of error is minimized.
See [13], [3] for a more detailed discussion of learning pa-
rameters from this perspective.

Several works can be found in the literature about pa-
rameter learning from examples. For example, [9], [10]
studies the determination of the weighting vector for the
OWA operator. In a similar way, [33] studies the learning
for both the weighted mean and the OWA operator. [12]
and [31] deal with the learning of fuzzy measures for the
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Choquet integral and [13] compares different approaches
for modeling using the Choquet integral.

In the framework of data mining, the second approach
is of interest. It allows to build a data model from existing
data. However, not all the approaches to build the model
are suitable as some methods have a high computational
cost. Tterative computation with a cost proportional (linear
or even higher) to the number of examples is prohibitive.
For example, genetic algorithms based approaches [20] are,
usually, extremely costly as the fitness function needs to
compute at each step an aggregated value for all the exam-
ples. This is also the case for the method described in [9],
[10] based on gradient descent. However, in this latter case,
if it is possible to start with a “quite good solution”, then
it can be revised as long as time and resources are avail-
able. A good alternative for building models in the case of
quasi-weighted means is to use active set methods. These
methods are iterative ones and thus can obtain different so-
lutions according to the “available” time. In this approach,
the cost of the initial step is proportional to the number
of examples, then, once the iterative process is started, the
cost of a single step is proportional to the number of con-
sidered variables. Moreover, the number of steps of the
iterative process is bounded and thus the best solution can
be found in a finite time.

B. Re-identification of individuals.

Re-identification happens when two entities are detected
as corresponding to the same object or individual. For ex-
ample, when some sensitive and confidential data is linked
to a particular individual. Record linkage is one of the
most general re-identification method. Its goal [21], [26]
is to link records in separate files that relate to the same
individual or household. These methods were developed
to improve the quality of the data and are nowadays used
in data cleaning [24] for distributed and non-homogeneous
databases. Such databases typically [41] contain informa-
tion about the same individuals described using the same
variables that, frequently, do not match due to accidental
distortion of the data. Record linkage is applied in such
cases to find the records that correspond to the same indi-
viduals and to make databases consistent. Existing tools
for this purpose (e.g. Integrity [14]) use statistical and Ar-
tificial Intelligence techniques to determine matching be-
tween records. Multi-database mining, that intends to ex-
tract knowledge from non-homogeneous databases (see e.g.
[50]), also benefits from these tools.

[44], [11] and [41] describe the main approaches for
record-linkage. The usual case is to consider files that share
a set of variables. In this case, the main difficulty is that a
matching procedure among pairs of records is usually not
enough to link the records. This is so because data files
are subject to errors (either due to intentional or to acci-
dental distortion) and thus not only equal values should
match but also similar ones. As [45] points out, “the nor-
mal situation in record linkage is that identifiers in pairs of
records that are truly matches disagree by small or large
amount and that different combinations of the non-unique,



error-filled identifiers need to be used in correctly matching
different pairs of records”.

This situation of files sharing a set of variables is usu-
ally dealt by probabilistic record linkage [44] or distance-
based record linkage [23]. The former is based on estimat-
ing (using the EM algorithm — see [6] and [15] for details)
conditional probabilities of coincidence of the values of a
particular variable when a true match or a true non-match
is assured. This is, which is the probability that the corre-
sponding values for a particular variable is the same, when
two records are known to correspond (or not correspond)
to the same individual. Then, given a pair of records the
pair is classified as either corresponding to the same indi-
vidual or not according to an index computed from these
probabilities. While first methods assumed conditional in-
dependence between variables [15], [21], more recent works
avoid such assumption. See [41] for a detailed description
of probabilistic record linkage and [45] for a description
of current approaches and research topics. The distance-
based record linkage consists on linking a record with the
more similar one. This approach relies on the existence
of a distance function. [41] compares both methods and
concludes that the probabilistic one is slightly better (re-
identifies more records) for categorical variables and that
the distance-based one is more appropriate for numerical
variables. Recently, alternative methods based on other
assumptions have been introduced in the literature. For
example, [1] describes a method based on clustering tech-
niques.

Although most methods follow the ideas explained above
that files share a set of common variables, other situations
are also possible. In particular, it is also of interest the case
of files not sharing any variable (or only a few of them).
In this case, re-identification is partially possible but be-
ing of a different nature because it cannot be based on
the comparison of values from records of different files but
corresponding to the same variable.

Record linkage for files not-sharing variables is of interest
when considering data files with similar information (e.g.
economical variables) from consecutive time periods (e.g.
two different years) concerning to almost the same individ-
uals (e.g. the companies of a certain region). In this case,
although the variables are not the same, “similar” behavior
of variables in both files allows for the re-identification of
the individuals. Naturally, the more similar the behavior,
the better for re-identification. Nevertheless, although this
is a subject of increasing interest, no much effort has been
devoted to the subject.

In [35], we gave a first approximation to the re-
identification for files not sharing variables. A more ex-
haustive analysis of the approach using real data is de-
scribed in [8]. In [35] and [8], some basic guidelines are es-
tablished to allow for re-identification: (i) files share a set
of individuals and (ii) some relationships between individ-
uals are kept across files. In [35] and [8] these relationships
are established using clustering algorithms. These methods
differ from [1], that also uses clustering for re-identification,
on the way clusters are defined and how the records are
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linked once their corresponding clusters are known.

Here we follow, a different approach suitable for quanti-
tative variables. We show that some aggregation operators
(in particular, we focus on the Ordered Weighted Aver-
aging - OWA - [47] operators) are a suitable way to ex-
tract implicit structures from data. This work extends [37].
Here, we give empirical results and we proof that the num-
ber of re-identified elements are significant.

III. PRELIMINARIES

In this section we review some aggregation operators that
are used latter on in this work. In particular, definitions
for the weighted mean, quasi-weighted mean and the OWA
operator (the one based on a weighting vector and the one
based on non-decreasing fuzzy quantifiers) are given.

Definition 1: A vector w = (wq---w,) is a weighting
vector of dimension n if and only if w; € [0,1] and ), w; =
1.

Definition 2: Let w be a weighting vector of dimension
n, then a mapping WM, : R® — R is a Weighted Mean
(WM) of dimension n if

WMy(a1, - ,an) =Y wia;

(]

Definition 3: Let w be a weighting vector of dimension
n, let f be a strictly increasing function, then a mapping
QWM, : R — R is a Quasi-weighted Mean (QWM) of
dimension n if

WMy (a1, an) = f’l(Z w; f(a;))

For properly selected functions f(x), quasi-weighted
means generalize some well known aggregation operators.
See, for examples, that with f(z) = Kz + K’ we obtain the
weighted mean and with f(z) = Klogz + K’ we obtain the
geometric mean.

Definition 4: [47]. Let w be a weighting vector of dimen-
sion n, then a mapping OWA,, : R® — R is an Ordered
Weighted Averaging (OWA) operator of dimension n if

OW A, (a1, ,an) = Z Wil ()

where {o(1),---,0(n)} is a permutation of {1,---,n}
such that as(;_1) > as@ for alli =2,--- n. (ie., as@) is
the i-th largest element in the collection aq, ..., a,).

This definition of the OWA operator requires a weighting
vector of fixed dimension being its dimension the number
of elements to aggregate. An alternative definition based
on decreasing fuzzy quantifiers exists that can be used for
data vectors of arbitrary size. This alternative definition
allows the comparison of different size data vectors: com-
parison with respect to the outcome of the OWA operator.
Similarity of two data vectors can then be measured as
a function of the differences between the outcomes of the
OWA operators applied to the vectors.

Definition 5: [48]. A function @ : [0,1] — [0,1] is a non-
decreasing fuzzy quantifier if Q(0) = 0, Q(1) = 1 and for
all z, y in [0,1], x < y implies Q(z) < Q(y).



Definition 6: [48], [49]. A mapping OWAg : R™ — R is
an Ordered Weighted Averaging (OWA) operator of dimen-
sion n if

OWAQ(G’M e 7a’n) = Z wiaa(i)
%

where w; = Q(i/n) — Q((i—1)/n) and where o is defined
as in Definition 4.

In this way, an OWA operator with a suitable fuzzy
quantifier can compute a value with which all information
sources agree, at least one source agree, about half agree,
etc. Note that the same quantifier allows the computation
of the aggregated value for an arbitrary number of inputs
(sources) and that the quantifier only refers to a proportion
of the sources but not to an exact number.

Therefore, the OWA operator, specially when defined in
terms of a fuzzy quantifier, is a flexible tool that is ap-
propriate when the number of variables is not known or
can change in different instantiations of the same problem.
This is the case in the re-identification problem described
in Section V and similar situations can be envisioned in
ensemble methods (new partial models are included in the
system without modifying the decision making module).
In fact, the flexibility of OWA operators compare posi-
tively in relation to other operators as e.g. the weighted
mean (where the number of sources has to be fixed be-
fore hand and weights are assigned to sources). Moreover,
more complex operators like the Choquet and Sugeno inte-
grals present additional difficulties because the number of
parameters tend to be extremely large (2" where n is the
number of sources or variables).

IV. AGGREGATION OPERATORS FOR BUILDING DATA
MODELS.

This section is focused on mechanisms for learning pa-
rameters for aggregation operators from examples. Exam-
ples are assumed to be in accordance with Table I. This is,
it consists on M different examples, each of them consist-
ing on the values supplied by N information sources and
the correct outcome that we intend to estimate from these
values. Therefore, each example consists on N + 1 values
being (aid}...a%|b") the ones for the i-th example where
aj» is the value supplied by the j-th information source and
being b® the ideal outcome for the same example.

1 1 1 1
a% a% e aé\, | b2
ai  a; ay, | b

M M M M
at’ a0 any | b

TABLE 1

DATA EXAMPLES.

Given a set of examples and assuming that the function
used to aggregate C is known, the goal is to determine the
parameters of C. When C is the weighted mean, this is to
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find the weighting vector w so that error is minimized. Er-
ror is measured for each example in terms of the difference
between the ideal outcome (i.e., ') and the real outcome.
This is, in the general case:

(C(a{a . wa}jz) - bj)2

and when C is the weighted mean:

(WMy(a,... al)—b)?

Therefore, following the notation in Table I, the function
to minimize is:

(C(af,-.. al) =b)° (1)

D¢ (parameters(C)) =

M-

Il
-

J

However, this problem is usually a constrained one be-
cause there usually exist constraints over the parameters.
This is the case of the weighted mean, where w is a weight-
ing vector. In this case, the problem can be formalized in
the following way:

Minimize Dy pr(w)
Subject to

where Dy pr(w) = ZJ-le(WMw(aJ1 o al) — b2

A. Solving the optimization problem

The problem formulated above is a typical optimiza-
tion problem where a function has to be minimized sub-
ject to a set of constraints. There exist several meth-
ods to solve these problems according to the function
to minimize (quadratic, convex, ...) and the type of
restrictions that apply (linear constraints, equality con-
straints, ...). When the distance to minimize is either
Dwy = Y (WMyl(al,...,a}) — b)? or Dowa =
z:;\/il(OVVAW((LJ1 ...,al) — b7)? the problem to solve is
a quadratic one subject to linear constraints. In such a
case several methods apply. For example, [9], [10] and [33]
applied two different approaches: [9], [10] used the gradi-
ent descent for the OWA operator and [33] used active set
methods for the weighted mean and the OWA operator.

In order to avoid the inconvenience of dealing with the
inequality and equality constraints (w; > 0 and ), w; = 1)
when applying gradient descent to the OWA operator, [9],
[10] reformulated the problem. Instead of considering the
learning of the weighting vector w, they considered the
learning of a vector A = (A1 ...An) from which weights
were extracted as follows:

N N
w = (e)‘l/ZeAf e’\N/Ze)‘j)
j=1 j=1



In this way, any vector A € RN leads to a weighting
vector. Therefore, the problem of learning weights for the
OWA operator (we assume again that available data follows
the description in Table III) is equivalent to the minimiza-
tion of:

M
Dowa(p) =Y _ OWA,(a,...,

Jj=1

where w = (e?t/ ZJli1 et ... e/ Zjil eh)

[33] presents with great detail an alternative approach
based on active set methods. Active set methods rely on
the simplicity of computing the solution of quadratic prob-
lems with linear equality constraints. Based on this, it-
erative algorithms have been developed in which at each
step inequality constraints are partitioned into two groups:
those that are to be treated as active (considered as equal-
ity constraints) and inactive (essentially ignored). Once a
partition is known, the algorithm proceeds moving on the
surface defined by the working set of constraints (the set
of active constraints) to an improved point. In this move-
ment some constraints are added to the working set and
some others are removed. This process is repeated until
the minimum is reached. When the function to minimize
is convex (as they are Dy pr and Dow 4) the method finds
the minimum and although the method is iterative the final
minimum is not influenced by the initial weighting vector.

Gradient descent requires the computation of the gradi-
ent at each step; and the computation of the gradient in
successive steps require the evaluation of the examples. As
the set of examples is usually very large in data mining
domains, it is difficult to apply this approach in this field
unless an initially good solution is considered and the itera-
tive process is limited to refine the initial solution (this was
the case in [38]). Other disadvantages for gradient descent
are its slow convergence and the problem of having more
than one A vector that correspond to the same weighting
vector. This, together with the fact of being an iterative
process provokes that the final result depends often on the
initial weighting vector.

Active set methods require an initial computation of a
square matrix from the original data. Although the dimen-
sion of this matrix is the number of variables, its construc-
tion cost is on the order of N « N x M (being, as before,
N the number of variables and M the number of elements)
and thus it is a time-consuming task proportional to the
number of elements. However, once this matrix is built,
each step of the iterative process has a polynomial cost on
N.

Thus, for the weighted mean and the OWA operator is
more efficient to use the second approach. However, when
the function to minimize is not quadratic (as it is the case
of the Weighted OWA operator [32]), active set methods
are complex and difficult to implement because it is not
easy to find the minimal solution at each step and, instead,
gradient descent can be used. Software packages can be
used at this time.

Both learning methods have been applied to determine

ap) =) (2)
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the weights for the weighted mean and the OWA operator
(in practice, the only difference when learning the weights
for the OWA operator in relation to the learning for the
weighted mean is that each row in the data matrix has to
be reordered according to the permutation o).

The same approach can be used to learn the weights
for a selected quasi-weighted mean (see [39]). This is, a
quasi-weighted mean with a known generator function. Let
f be the generator of the quasi-weighted mean, then the
parameters are determined considering in the distance to
minimize the following expression:

(Q_wif(a])) = F(¥))?
instead of the original one:

(1 wif(ad)) — )2

This is so because both expressions would lead to a similar
distance when weights are learned, and the former is easier
to minimize. It allows to compute in an initial step the
values f(a]) for all i and j, and then the methods described
for the weighted mean can be applied. Considering the
other expression, the minimization problem becomes a non
quadratic problem, and thus more difficult to solve. In
a recent work, Beliakov [3] has also considered such an
optimization problems.

B. Examples

Ezample 1: Three examples are considered below. They
are taken from the machine learning repository [18]: the
iris data file (4 variables and 150 examples), the abalone
data file (8 variables and 4177 examples) and the iono-
sphere data file (34 variables and 351 examples — one, that
is always zero, is removed). To use this files some prelimi-
nary work was required. First, we had to replace all sym-
bolic variables by numerical ones. These were the changes
performed: the classes iris-setosa, iris-versicolor and iris-
virginica in the iris data file were replaced by numerical
values 1.0, 2.0 and 3.0; the three categories M, F, and I
(infant) in the variable Sex in the abalone data file were
also replaced by the numerical values 1.0, 2.0 and 3.0; and
the classes “g” and “b” in the ionosphere data file were
replaced by 1.0 and 0.0. Second, we normalized all the
variables in the [0, 1] interval.

For each of the resulting files, active set methods were
applied and two models were built: one for the weighted
mean and the other for the OWA operator. The corre-
sponding distances are given in Table II.

This example shows the suitability of the approach and
its cost make it appropriate for large data files. Note that
in the ionosphere case, the number of variables is large
(34 variables) but the computational cost in the iterative
process only depends on the number of variables.

In [33], this approach was compared against [10] for
some toy examples described in this latter work and re-
sults showed a better performance of our approach (error
was reduced from 0.002156 to 0.001256).



’ H iris \ abalone \ ionosphere ‘

Dy || 3.1544 | 37.5189 95.9145
Dowa || 6.3197 | 43.8082 62.9477
TABLE II

OPTIMAL DISTANCES FOR THE IRIS, ABALONE AND IONOSPHERE DATA
FILES USING LEARNED PARAMETERS FOR WEIGHTED MEAN Dy s AND
OWA OPERATOR Dpow A-

V. AGGREGATION OPERATORS TO EXTRACT
INFORMATION FROM DATA.

It is a well-known fact that an aggregation operator sum-
marizes the information that the information sources sup-
ply. In particular, practical use of these operators is moti-
vated by their capability in reducing the uncertainty associ-
ated to the data, compensating redundancy and, in general,
to extract relevant information. These properties are the
ones that make these operators interesting for extracting
information from raw data.

Also, these properties are interesting for re-identifying
individuals from data files not sharing variables as, a pri-
ori, in such situations the only available information is the
one available in the files. In this case, if files contain the
“same information” a working hypothesis is that when the
aggregation is applied to two records corresponding to the
same individual, the relevant information emerges from the
raw data. According to this, we assume that for each record
a representative that is somehow independent of the actual
data can be computed. This independence has to hold so
that the two representatives (one for each file but from the
same individual) are similar. Also, ideally, the representa-
tives are similar although variables (and the corresponding
values) are different. In fact, this hypothesis holds if vari-
ables are correlated (or, more precisely, if one set of vari-
ables as a whole is “correlated” with respect to the other
set of variables). This is, for example, the case of “in-
come” and “size of household”. Therefore, two files, one
containing the information corresponding to “income” and
the other with the information corresponding to “size of
household” could be used for re-identification of individu-
als.

However, as the representative value has to be some-
how independent of the variables, not all aggregation op-
erators can be applied. In fact, it seems that the best
ones are those that are commutative (i.e., C(ay, -+ ,an) =
C(ag()," " so(n)) for any permutation o) because partic-
ular variables do not have any influence on the output.
According to this, the weighted mean and the Weighted
OWA [32] are not applicable here. In fact, the OWA op-
erator is the only commutative Choquet integral. An ad-
ditional element to be taken into account is OWA’s flexi-
bility with respect to the number of parameters (this was
described in Section III). For all this, we have used OWA
operators defined in terms of fuzzy quantifiers. It has to
be said that Sugeno integral [30] with commutative fuzzy
measures could also be used. However, these integrals are
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usually applied to data belonging to ordinal scales instead
of numerical scales and in this work we limit our approach
to the case of numerical data.

According to what has been introduced here, the as-
sumptions listed below direct this work. In the following
we assume that we want to link records that belong to two
different files.

Hypothesis 1: Both files share a large set of common in-
dividuals.

Hypothesis 2: Data in both files contain, implicitly, sim-
ilar structural information.

Hypothesis 3: Structural information can be expressed
by means of numerical representatives for each individual.

Hypothesis 4: Aggregation operators can summarize the
information of each individual.

The first hypothesis implies that re-identification is pos-
sible, as there are records to be linked because they cor-
respond to the same individual. The second hypothesis is
to say that there are similarities between different individ-
uals that are kept more or less constant in both files. We
call these similarities structural information. The third hy-
pothesis and the fourth one are the ones that justify the
use of aggregation procedures.

A. Using OWA operators to extract information.

To use OWA operators for information summarization,
we need the settlement of OWA operators. First of all, one
of the two definitions has to be selected. As previously de-
scribed, due to the fact that the number of variables can be
different in both files, it is appropriate to use the quantifier
based definition (i.e., Definition 5). This is so because the
same quantifier can be used in combination with any input
vector of arbitrary dimension. Using the other approach
would require the extension of an n-dimensional weight-
ing vector into a m-dimensional one (n # m). Although
methods exist to do this extension (e.g. the construction
of the quantifier in [36]) it is simpler to start with the def-
inition based on the quantifier. Moreover, the use of fuzzy
quantifiers allows us to consider families of parameterized
quantifiers.

It is a well-known fact that different quantifiers lead to
different results of the OWA operator. In fact, different
parameterizations correspond to different representatives
of the individual. As a priory it is not known which of
the representatives is the best one for re-identification, we
have considered a set of them. This is, we apply the OWA
operator with several parameterizations (we have consid-
ered a family of fuzzy quantifiers) obtaining in this way for
each file a two dimensional table that follows the one in
Table III. For each individual R in a file A and for each
parameterization P; we have the corresponding aggregated
value cf}j. This is, c{}j is the result of applying the OWA
operator with the j-th parameterization to the i-th record
in file A.

The same process (the same OWA operator with the
same quantifiers) is applied to both files. As the number
of parameterizations is the same in both files, the same
structure is built for both files. Then, usual record linkage



techniques can be used to link the new records (now records
share the same set of variables). The application of this
method and the results obtained are explained in the next
section.

14 fﬁ fﬁ }%
A A A A
Ry €11 | €21 | "7 | G
A A A A
Rn Cin | Com | " Cin
TABLE III

SUMMARIZATION STRUCTURE FOR FILE A.

B. Examples.

Ezample 2: To analyze the feasibility of our approach we
have analyzed three artificial problems. These problems
have been generated using the publicly available informa-
tion from the UCL repository [18] we have already used
in Section IV-B. This is, the iris, abalone and ionosphere
data files. The selection of this data set for structure de-
termination is based on their use of continuous variables
and the fact that being public data files experiments can
be reproduced.

To use this data for re-identification, two alternatives
were possible: re-identification of the examples and re-
identification of the variables. In the first alternative, the
original file would be split in such a way that all examples
but only half of the variables are present in both files. In
the second alternative, the original file would be split so
that all variables but only half of the examples are present
in both files. We have followed the latter approach because
it is not sure that half of the variables have enough infor-
mation about the examples to allow for re-identification.
Instead, two randomly chosen subsets of about half of the
initial examples (about 175 examples in the case of iono-
sphere, 2000 examples in the case of abalone, and 75 ex-
amples in the case of iris) should give enough information
about the structure of the variables. In fact, subsets of
these examples are usually used in machine learning [29]
because they assume that these subsets have still enough
information to model the variable behavior. In other words,
the second approach has been used because we assume
more redundancy in the examples than in the variables.

To apply the method described above, we have con-
sidered an initial normalization step following the usual
approach. I.e., Translation of the initial value x in the
[min, maz] interval into to the value 2’ in [0,1]:

2’ = (z — min)/(max — min)

After normalization, the file was partitioned into two sets
of approximately the same number of records (records were
selected at random).

Then, for each variable in each file, the OWA operator
has been applied using 10 different parameterizations. Se-
lected quantifiers are: Q(x) = x%/% for i = 1,---,10. In
this way, for each of the initial data file we have obtained
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two files, with the 10 representatives for each variable each.
At this point, to re-identify the variables, a record linkage
algorithm was applied to each pair of files. We have applied
the record linkage algorithm developed by W. Winkler [43]
at U. S. Census Bureau (U.S.A.). The number of variables
that were correctly re-identified are given in Table IV. In
the case of the iris data file, only one link was suggested
(but it was incorrect), the other variables were not consid-
ered as related.

initial file re-identified variables | number of variables
iris 0 4
abalone 6 8
ionosphere 10 33

TABLE IV

NUMBER OF RE-IDENTIFIED VARIABLES (IN THE IONOSPHERE FILE ONE
OF THE VARIABLES IS ALWAYS ZERO AND IT WAS NOT CONSIDERED IN
THE RE-IDENTIFICATION PROCESS).

B.1 Evaluation of the results.

Although the results we have obtained so far are not
as good as we would like, and, in the particular case of
the ionosphere data file, the number of corrected links is
less than a half of the total number of variables, results
are quite better than they seem. To evaluate the results
we consider the probability of having more than a certain
number of correct links, say &, in a random permutation of
n individuals. We study below this probability and then
we compute the probabilities for the the abalone and iono-
sphere data files.

Perfect re-identification when two files A and B have
the same n individuals correspond to finding a particular
permutation 7 such that for each record i in A, 7 (i) is
assigned to each corresponding record j in B. This is,
(1) = j can be understood as the linkage of individual i
in file A with the individual j in file B.

Using this notation, we can compute the following:

1. The number of possible re-identifications: n!

2. The number of permutations such that there are exactly
r elements correctly re-identified: These permutations with
exactly r correct links can be built considering the follow-
ing steps (we use below k := n —r). First, we take k
elements from the correct permutation 7 and we permu-
tate this k elements in such a way that there is no one that
keeps its original position. Therefore, there are exactly r
elements correctly re-identified (the elements not selected).
To compute the cardinality of this set of permutations, we
need to know that the number of sets that can be taken
with k elements is: n!/(k!(n — k)!). Also, that a permuta-
tion without fized point (see e.g. [25]) generated from 7’ is
a permutation 7’/ in such a way that there is no element
that keeps its original position (i.e., 7'(z) # =’ for all 7).
The number of permutations of k elements without fixed




point is [25]:

(=D*

v!

k
(B)(k) = k>
v=0

According to this, the number of permutations such that
there are exactly r elements in the correct position is:

n! Zﬁ:o (_vll)k
(n—k)!

3. The probability of finding at random a permutation with
exactly r elements in the correct position:

Y
2520 ( ’ul')
(n—k)!

In Table V probabilities for the case of having n = 33
(the ionosphere case) are given. Note that the probabil-
ity of obtaining 10 or more correct links (the ones ob-
tained in the example above for the ionosphere data file)
is 1.01377715E — 7. Similarly, Table VI displays the prob-
abilities for the case of n = 8. This is the case of the
abalone data file. In this case, the probability of having
more than 6 correct links (the ones obtained in this exam-
ple) is 7.1924605F — 4. Table VII displays the correspond-
ing probabilities for the iris file (n = 4).

An additional aspect to be considered for the evalua-
tion of this result is that standard techniques for record-
linkage when files share a set of common variables do not
lead to 100% re-identifications. In fact, [41] describe about
300 record-linkage experiments (one third using numerical
data and the rest using categorical data) and the corre-
sponding percentage of re-identifications for both proba-
bilistic and distance-based record linkage approaches are
listed. The following averages can be computed from the
listings: 26.12% (for distance-based record linkage for nu-
merical data), 19.72% (for probabilistic one for numerical
data), 59.30% (for distance-based one for categorical data)
and 57.93% (for probabilistic one for categorical data). In
the approach presented here, we got 75% re-identifications
for the abalone file and 30.30% for the ionosphere file.

According to all this, the abalone and ionosphere exam-
ples show that although re-identification for files not shar-
ing variables is far from perfect, the approach proposed
here is appropriate because it obtains meaningful and rel-
evant links.

VI. CONCLUSIONS.

In this work we have considered the use of aggregation
operators in data mining. We have considered two different
uses. First, we have shown its application in the process
of building data models. We have argued that some of
the learning techniques are appliable to large databases
because the cost is proportional to the number of vari-
ables. An example that considers 33 variables has been
given. Second, we have shown that aggregation operators
are useful for extracting implicit information from raw data
and we have applied them to a re-identification problem.
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r | probability |links| = r | probability |links| > r
0 0.36787942 1.0

1 | 0.36787942 0.63212055

2 0.18393971 0.26424113

3 | 0.06131324 0.0803014

4 | 0.01532831 0.018988157

5 0.003065662 0.0036598467
6 | 5.109437E-4 5.941848E-4

7 7.299195E-5 8.3241146E-5
8 | 9.123994E-6 1.0249197E-5
9 1.0137771E-6 1.1252026E-6
10 | 1.01377715E-7 1.1142548E-7
11 | 9.216156E-9 1.0047766E-8
12 | 7.680129E-10 8.316107E-10
13 | 5.907792E-11 6.359777E-11
14 | 4.2198515E-12 4.5198524E-12
15 | 2.8132344E-13 3.0000107E-13
16 | 1.7582715E-14 1.8677634E-14
17 | 1.0342773E-15 1.0949201E-15
18 | 5.745985E-17 6.064281E-17
19 | 3.0242027E-18 3.1829554E-18
20 | 1.5121014E-19 1.5875276E-19
21 | 7.200482E-21 7.5426254E-21
22 | 3.2729465E-22 3.4214245E-22
23 | 1.4230203E-23 1.4847793E-23
24 | 5.929247E-25 6.1758905E-25
25 | 2.3717165E-26 2.4664351E-26
26 | 9.121372E-28 9.471847TE-28
27 | 3.3801082E-29 3.5047438E-29
28 | 1.202626E-30 1.246356E-30
29 | 4.241236E-32 4.3729944E-32
30 | 1.2566625E-33 1.317584E-33
31 | 6.080625E-35 6.092142E-35
3210 1.1516336E-37
33 | 1.1516335E-37 1.1516336E-37

TABLE V
PROBABILITIES OF HAVING 7 CORRECT LINKS, AND OF HAVING MORE
OR EQUAL THAN 7 LINKS FOR 33 INDIVIDUALS.

We have shown that OWA operators are suitable in this
task. We have compared our approach with random se-
lection of linked pairs and with the results usual in re-
identification using standard approaches. In both compar-
isons, our method is well rated and, thus, it shows that the
method is suitable for re-identification for files not sharing
variables.
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