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Abstract

When tables of quantitative data are generated from a datafile, the

release of those tables should not reveal information concerning indi-

vidual respondents. This disclosure of individual respondents in the

microdata file can be prevented by applying disclosure control meth-

ods at the table level, but this may create inconsistencies across tables.

Alternatively, disclosure control methods can be executed at the mi-

crodata level, but these methods change the data permanently and

do not account for specific table properties. These problems can be

circumvented by assigning a weight factor to each respondent in the

microdata file. Upon tabulation, each contribution of a respondent is

weighted multiplicatively by the respondent’s weight factor. This ap-

proach is called Source Data Perturbation (SDP) because the data is

perturbed at the microdata level, not at the table level. It should be

noted, however, that the original microdata is not changed. Moreover,

the weight factors can be chosen such that the tables generated from

the microdata are safe, and the information loss is minimized.
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Chapter 1

Introduction

When data are released in the form of tables of magnitude data, each cell

in the released table(s) represents the aggregate on some response variable

(e.g. profits) over all respondents in that cell. Some cell values may be

dominated by one or a few respondents. This may lead to disclosure of

some respondent’s contribution, as some of the dominating contributors can

combine forces to disclose information about other respondents. To prevent

any entity’s value from being identified, disclosure limitation can be executed

at the table level (e.g. by cell suppression), or at the level of the underlying

microdata. A recently proposed method is to provide protection by adding

multiplicative noise to the respondent microdata prior to tabulation (see

Evans, Zayatz, Slanta [7]). To add noise, each contributing establishment in

the microdata is assigned a multiplier, and this multiplicative weight factor

should provide protection upon tabulation. Because the noise is added at

the microdata level, and because several other perturbation methods exist,

the expression Source Data Perturbation (SDP) is used when referring to

the use of multiplicative noise at the microdata level.

The amount of noise added should depend on the desired safety level

of the tables that are to be released. Therefore, a set of tables that are

demanded to be safe is defined. This set of tables is used as a calibration set,

i.e. these tables are used to find the amount of perturbation that is applied

to the respondent microdata. After the perturbation process, the tables in

this set are supposed to be safe. However, next to tables of the calibration

set also other tables may be generated. Sensitive cells, which are cells that
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contain contributors that are at risk to be disclosed, should receive a lot of

perturbation, while nonsensitive cells should receive as little perturbation

as possible. Definitions for ”disclosure” as well as for ”sensitive cells” will

be given in Section 2.1. The method proposed in [7] achieves these desired

properties, but in this method the exact amount of noise added is chosen

arbitrary while in general, this amount should depend on the sensitivity of

the cells in the tables to be released. This means that the amount of noise

added should not be too small, but only just enough to assure protection

of individual respondents in sensitive cells. Therefore the information loss

suffered by the perturbation should be minimized. The information loss can

be evaluated by measuring the variance added to the tables due to applying

the noise.

Therefore, first the method of Zayatz, Evans, and Slanta will be imple-

mented and evaluated. This method, that will be referred to as the ZES

method, only looks at the individual respondents in the microdata, i.e., it

does not look at the table level. Generally, SDP methods should first look

at the table level to see how much perturbation is necessary. Then, given

the results of this first step, the second step should be the translation of

these results into multiplicative weight factors that are to be assigned to the

individual respondents.

In the first step, the desired perturbation levels that are necessary to

make the table safe can be found using several approaches. First, a measure

for the safety of perturbed tables is developed. Measures for the safety of

not-perturbed tables do not directly apply to perturbed tables, because they

do not account for the protection offered by the perturbation. This measure

can be used to deduce the amount of noise needed in the cells of a table.

Also, an approach based on the method of Iterative Proportional Fitting

is introduced. In this method, important cell values are fixed at their true

values. Because this method controls the marginal cells, it will be referred

to as the MARG method.

In the second step, the new sensitivity measure for perturbed tables can

be used to find the amount of noise that the ZES method should add to the

cells. The original ZES method skips the first stage, but the extension to

the ZES method does not. Second, the desired perturbation in a cell could
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be proportionally spread over all contributors to that cell. Third, we also

consider rewriting the problem as an optimization problem, in which the

multiplicative weight factors are the variables for which the problem is to

be optimized. The optimization problem involves minimizing an objective

function that measures the difference between the desired cell totals and the

weighted cell totals. The desired cell totals were found in stage one. The

weighted cell totals are dependent of the perturbation factors chosen and the

optimal perturbation factors are found when the weighted cell totals match

the desired cell totals. Also, the optimization problem can be formulated to

minimize information loss under the constraint of safety.

The SDP problem can be summarized as follows: For generating safe

and consistent tables from microdata, multiplicative weight factors can be

assigned to the respondents in the microdata, such as in [7]. This method

can be generalized by choosing these perturbation factors dependent of some

safety measure. Also other methods can be used to find desired perturbation

factors at the table level. These then have to be translated into perturbation

factors for the multiplicative noise approach at the respondent level. These

methods will be proposed and evaluated.

In this report, in Chapter 2 first some background on statistical agen-

cies, Statistical Disclosure Control (SDC), terminology, and currently used

disclosure control methods is given. Then some cell sensitivity measures are

given, to provide some intuition on the disclosure prevention problem. After

that, in Chapter 3 the basic principles of SDP methods will be considered.

Also the ZES method will be discussed. New SDP methods to perturb tables

are proposed in Chapter 4. Then, in Chapter 5, some methods to translate

these perturbation levels into multiplicative weight factors at the respondent

level are discussed. To know where protection is needed, some disclosure sce-

narios are discussed in Chapter 6. In Chapter 7, the SDP methods will be

evaluated and compared using real-world data. The properties of the data

are discussed and also some attention is paid to the implementation of the

testing program SoDaP.
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Chapter 2

Statistical Disclosure Control

In this chapter some background on Statistical Disclosure Control (SDC)

and the role of statistical offices is given. Some conventional and some

newly developed disclosure control methods are discussed. Also attention is

paid to some safety measures, especially to the (n,k)-dominance rule. First

however, some terminology is introduced to familiarize the reader with the

vocabulary used.

2.1 Terminology

Respondents are the entities under analysis that have submitted their in-

formation to the statistical office. These include companies, institutions,

individual people, etc. For each respondent, scores on a number of at-

tributes or variables are given. In this report, the term attribute and the

term variable are used as synonyms. Attributes that can be measured on

a metrical scale, such as income or profits, are referred to as quantitative

variables. Attributes that are categorical, such as sex, are referred to as

qualitative attributes. The datafile which contains the records describing

respondents by their scores on the attributes is referred to as the micro-

data file. From the microdata file, tables are generated. Tables are spanned

by several attributes, such as industrial classification, measure of size, geo-

graphical location, etc. Tables consist of cells, which contain the value on

some response variable for some specific combination of values of the span-

ning variables. For instance, a cell may give the profits of chicken farms in

Belgium, in a table spanned by attributes representing industrial classifica-
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tion and geographical location. Marginal cells are cells that represent row

totals and column totals in the table. In the previous example, a marginal

cell could represent the aggregate profits of all chicken farms in Holland,

Belgium, Germany, etc. A table is additive if the interior cells sum up to

the marginal cell values. Some disclosure control methods may cause tables

to be no longer additive, as can be seen in Section 2.4.1.

To define statistical disclosure, Eurostat [9] uses the following definition:

Definition 1 Statistical disclosure occurs, if the dissemination of a statis-

tic enables the external user of the data to obtain a better estimate for a

confidential piece of information than would be possible without it.

Accordingly, the publication of data by the statistical agency should not

result in giving more information about individual respondents than was

already common knowledge.

A disclosure scenario describes the strategy that possible intruders may

follow. Intruders are malignant data users that try to disclose information.

To know how disclosure control methods should be applied, it is necessary

to be aware of the possibilities of the intruders. Only then effective coun-

termeasures can be taken.

A very important definition is that of a sensitive cell:

Definition 2 In a sensitive cell, the contribution of an individual respon-

dent contributing to that cell can be disclosed, i.e. it can be approximated to

within unacceptable narrow ranges.

So in a sensitive cell, too much information concerning an individual

respondent can be deduced, in any case more than was already common

knowledge. Sensitive cells are identified by sensitivity measures, and how

these measures work is explained in Section 2.6.

Data can be released in three different forms: as public use microdata,

tables of frequency count data, and tables of magnitude data. Microdata

contains records at the respondent level (naturally names and other direct

identifiers are not included). Microdata safety requirements depend on the
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recipients of the data. In tables of frequency count data, each cell contains

the number of units of interest over some qualitative variables. In this case,

a cell total may represent the number of chicken farms in Belgium, in the

previous example. These counts of qualitative attributes are considered to be

quantitative data. As mentioned before, in tables showing magnitude data,

the various cells contain aggregate quantities concerning respondents such as

business establishments, farms or institutions. In this report, mainly tables

of magnitude data are discussed. However, the effect of the perturbation can

be extended to tables of frequency count data, see Section 3.1. Multiplicative

noise is not applicable to qualitative variables.

2.2 Statistics Netherlands - Centraal Bureau voor

de Statistiek

The task of a national statistics office is to produce and publish statistical

information concerning national society. Statistical information published

by Statistics Netherlands (or, for that matter, by any other statistical office)

has to meet certain requirements to prevent individual information of the

respondents from being disclosed. These requirements are imposed by law,

and by public opinion. When a statistical agency looses its ’safe’ reputation

due to providing insufficient protection to individual respondents, those re-

spondents may no longer be willing to provide their exact figures on some

key variable, but rather would give some figure roughly equal to the original

figure to protect their valuable information, if they would reply at all. For

instance, most companies are reluctant to give their true R&D budget, as

it may influence their competitive advantage. However, companies may be

legally obliged to respond.

The law defines which information is allowed to be released, and also

to whom that information is allowed to be released. In general, the re-

ceiving party has to meet some statistical confidentiality requirements. For

instance, microdata is only permitted to be released to institutions that per-

form statistical or scientific research. Whether applying institutions satisfy

these criteria is determined in the Netherlands by the Central Committee

for Statistics. When releasing any information, the statistical office has to
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ensure that measures have been taken to prevent any individual respondent

from being recognized. Because the law cannot outline all cases that may

be encountered, the Director-General of Statistics Netherlands, advised by

the department of Statistical Methods at Statistics Netherlands, also has

the authority to judge which data is allowed to be released.

The release of business microdata is subjected to very strict require-

ments, not only because of the legal response requirement, but also because

of the fact that companies are often easily identified. This is a consequence

of the properties of the population: the population is relatively small, the

population is likely to be skewed by one or a few entities, the composition of

the population is common knowledge, identifying attributes can take a rela-

tively large range of possible values, and many companies are highly visible

in the public eye.

The department of Statistical Methods at Statistics Netherlands per-

forms research into Statistical Disclosure Control (among other fields of

research) and has developed software to evaluate disclosure risks and to im-

plement data protection measures. This software, named ARGUS (see [10]

and [11]) serves as a tool to support the various rules (see Section 2.6 for

these rules) provided by the Statistical Disclosure Control practices. For

more details, see [12].

2.3 Notation

To avoid ambiguities about the mathematical notation used in this report,

some definitions concerning these matters are given in this section.

The notation used throughout this report is as follows:

Xi = contribution of respondent i

Xij = contribution of respondent j to cell i

Yi = estimate of the contribution of respondent i

|C| = number of cells in the set of tables

|R| = number of respondents in the microdata

T = TC =
∞∑
i=1

Xi = the cell total of cell C (the subscript C is
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omitted when possible). The ∞-sign is used for notational

convenience. For |C| ≤ i < ∞, Xi = 0.

TN = the perturbed cell total, which can either be perturbed up

or down. The former is denoted by T+
N , the latter by T−N

e = TN − T = added noise to a cell

Ta:b =
b∑

i=a
Xi = the sum of contributions a to b (inclusive)

S(C) = the sensitivity of cell C. If S(C) > 0, the cell is consid-

ered to be sensitive

mi = 1± ri = multiplier (perturbation factor) of respondent i

µ is the mean of the (to be) assigned perturbation factors

p measures the accuracy with which a contribution can be es-

timated. The measurement is in terms of distance in per-

centages to the real value, i.e. p = T−D
X1

− 1 if coalition D

tries to estimate the contribution 1. Small p implies a good

approximation.

q = the prior knowledge of the coalition. q is defined in the same

terms as p

n = the maximum size of the coalition of intruders plus one, i.e.

the coalition is formed by n − 1 respondents (parameter of

the (n,k)-dominance rule)

k = a restriction on the relative mass of the n largest contribu-

tions to a cell (parameter of the (n,k)-dominance rule)

wi = the sample weight of respondent i. In sample surveys, each

respondent’s data is weighted inversely proportional to the

respondent’s probability of being included in the sample.

D =
n∑

i=2
Xi = joint contribution of the coalition of intruders

R =
∞∑

i=n+1
Xi = joint contribution of the remaining contributors

2.4 Currently used disclosure control methods

Because the publication of sensitive cells is prohibited by law, and because

respondents themselves do not appreciate disclosure, several solutions are
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available to protect sensitive cells. These include at the table level cell sup-

pression, table redesign and rounding. At the microdata level these include

global recoding, local suppression, top and bottom coding and microaggre-

gation.

2.4.1 Table level

• Cell suppression: sensitive, unsafe cells are replaced by missing values

(’x’ for instance). These are primary suppressions. However, when

marginals (which are row and column totals) are also published, the

suppressed values can be approximated using these marginals, so ex-

tra cells have to be suppressed to prevent the primary suppressed

cells from being approximated too close. These are called secondary

suppressions, and they prevent safe cells from being published. The

secondary suppressions are chosen in such a way that the information

loss is minimized, and also such that the interval of possible values

for each sensitive cell value is sufficiently large. To this end a safety

interval is defined. This is necessary, because else sensitive cell totals

may be estimated very accurately, in spite of secondary suppressions.

Consider the left-hand side of Table 2.1. Suppose the upper right and

the lower left (boldfaced) cells are sensitive. These are primary sup-

pressed. Suppose a suppression pattern such as in the right-hand side

of Table 2.1 is applied, where xp stands for a primary suppression and

xs stands for a secondary suppression.

0 1 1 2 0 xs xp 2

1000 0 1 1001 xs 0 xs 1001

1000 1000 0 2000 xp xs 0 2000

2000 1001 2 2000 1001 2

Table 2.1: Primary and secondary suppressions

Now, by using the row totals and column totals, ranges for the sensitive

cells can be deduced. For all cells, the deducible ranges are given in

Table 2.2

The sensitive upper right cell can be deduced to within 2
1 − 1 = 100%

14



0 [0,2] [0,2] 2

[999,1001] 0 [0,2] 1001

[999,1001] [999,1001] 0 2000

2000 1001 2

Table 2.2: Ranges for all cells

of its value, which is not a very good approximation. However, the

sensitive lower left cell can be deduced to within 1001
1000 − 1 = 0.1% of

its real value, which is very close to the real value. This example illus-

trates that safety ranges need to be used when using cell suppression to

prevent this kind of situations. Besides the suppression of nonsensitive

cells, another disadvantage is that finding the optimal set of secondary

suppressions is not trivial, and keeping track of suppressed cells across

various tables generated from the same microdata to keep those tables

consistent which each other may be very difficult.

• Table redesign: if there are too many sensitive cells, categories of the

spanning variables can be combined to reduce the level of detail in the

table. For example, two distinct rows ”chicken farms” and ”turkey

farms” could be combined into one row. This results in higher levels of

aggregation in the cells, thus protecting individual contributors better.

Unfortunately, the resulting table may be no longer of any value to

their users, as a result of the information loss incurred.

• Rounding: cell values are rounded to a given base value (e.g. multiples

of 10). This is a form of adding noise that may cause the table to be

no longer additive, since the rounded values no longer add up to the

rounded marginals. This may induce disclosure.

2.4.2 Microdata level

Some disclosure control methods employed at the microdata level are:

• Global recoding: several categories of a variable are combined into

one single category. This is done for the entire dataset, not only the

unsafe parts. This also reduces the amount of detail in the data. For
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instance, the categories ’cats’ and ’dogs’ could be combined into the

category ’pets’.

• Local suppression: one or more values in an unsafe combination of val-

ues are suppressed ( replaced by a missing value). E.g. in the combina-

tion ”occupation” = ”mayor” and ”residence”= ”Amsterdam”, ”occu-

pation” = ”mayor” is replaced by ”occupation” = ”missing”, because

since there is only one mayor living in Amsterdam, this combination

uniquely identifies him (Prior knowledge is that mayors are forced to

live in the city they run, and that each city only has one mayor. Also

instead of ”occupation”, ”residence” could be suppressed). This can

be done for any record in the data, thus making it possible to minimize

the number of local suppressions.

• Top and bottom recoding: in stead of global recoding, the top (or

bottom) categories of a variable form a new category. For instance, a

record showing an income of 1.000.000 is replaced by the mean for the

upper tail of the income distribution, thus aggregating over the top

income categories.

• Microaggregation: values for a variable are sorted and grouped, and

each score in a group is replaced by the group average. Therefore

totals and averages are preserved by this kind of noise addition.

• Data swapping: for some groups of records that match on certain

demographic characteristics quantitative data is exchanged. The de-

mographic match of characteristics is essential because it doesn’t make

sense to replace rural population data with urban population data and

vice versa.

• PRAM: The Post Randomization Method changes for each record the

score on a number of variables. This is done according to some proba-

bility mechanism. Because the transition probabilities are known, the

original data can unbiasedly be estimated from the observed data mo-

ments in the perturbed data. For instance, ”gender” = ”male” is with

some probability a changed to ”gender” = ”female” for some record

in the microdata. See [13] for details.
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Naturally combining several methods is also possible.

In general, there are two categories of approaches: data limitation (by

limiting the amount of data that is released, or by restricting the users given

access to the data), and data masking (by changing the data). The former

limits the amount of delivered information by giving less detailed data, or by

limiting the access to the data, while the latter limits the amount of released

information by giving less accurate data. Combining both approaches offers

the opportunity to make a trade off between accuracy and detail.

For more details concerning these and other methods, see for instance

Willenborg and De Waal [18], the ”Manual on Disclosure Control Methods”

by Eurostat [9], or for an early overview ”Report on Statistical Disclosure

and Disclosure-Avoidance Techniques” [16].

2.5 Research into disclosure control

In the last decade, very powerful computers became widely available, and

statistical agencies have been shifting from releasing data printed in tables

towards releasing data electronically in tables or public use microdata files.

As the demand for more (quantitatively) and more detailed (qualitatively)

data increases and disclosure risks increase as technology advances, also the

effectiveness of Statistical Disclosure Control should increase. One way to

maintain control over which information is released, is to let users do their

research on-site at the premises of statistical agencies, at stand-alone com-

puters or isolated networks (with no outside network connections, no disk

drives etc.). Also users can send their research requests or prespecified pro-

grams to the statistical agency, which looks into it and, if approved, returns

the desired data. Another development is that users can ask for tabulations

via some interface tool (e.g., Statline developed by Statistics Netherlands),

which then composes the table directly from the microdata. As all returned

tables have to satisfy safety measures, while it is not exactly clear which

tables are going to be asked for in the future, it is important to find some

disclosure control measure that provides means to generate safe and consis-

tent tables, without changing the underlying microdata permanently.

To protect data before release, current research is shifting from data-

hiding to data-masking. The objective is to prevent disclosure, while not
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destroying the means and covariance structures of arbitrary subdomains of

the data. The general idea is that by preserving the statistical properties

of the data, data users can draw reliable conclusions from the released (but

edited) data. Naturally, they are not supposed to be able to draw reliable

conclusions concerning individual respondents. For some of the new data-

masking methods, see [19] and [13].

2.6 Sensitivity measures

Sensitive cells are cells that are at risk of disclosing some information about

respondents. To measure the degree of risk, to identify sensitive cells, and

to support decisions about which disclosure control measures are to be used,

sensitivity criteria were developed. Upper sensitivity measures focus on the

degree to which a narrow upper estimate of the contribution of an indi-

vidual respondent can be obtained by using the published cell total. In

general, when an upper sensitivity measure S(C) is used, the cell C is con-

sidered sensitive if S(C) > 0. Lower sensitivity measures, which focus on

lower estimates of individual contributors, can also be used, and are deduced

analogously to upper sensitivity measures.

The most frequently used upper sensitivity rule is the ’n-respondent, k-

percent’-dominance rule, which demands that for a cell to be nonsensitive,

the n largest contributors do not contribute more than k percent of the cell

total. This can be stated as follows:

Sd(C) =
n∑

i=1

Xi − k
∞∑
i=1

Xi = T1:n − kT (2.1)

where Xi is the contribution of the ith largest contributor. The contributors

are ordered according to size, implying Xi ≥ Xj if i ≤ j. Also T1:n is

the joint contribution of the largest n contributors, and T is the cell total

or the sum of all contributions to that cell. Equation (2.1) measures the

concentration within cell C, i.e., the n largest contributors should not be

responsible for more than k percent of the cell total. This implies that

T1:n ≤ kT . Therefore, if Sd(C) < 0, then cell C is considered safe.

In some cells, one respondent may contribute a relatively large value as

compared to the other contributors, and in these cells the cell total approx-
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imates the value of the dominating contributor. These cells are considered

sensitive by the dominance rule. As most cell values are usually deter-

mined by variables as industrial classification and regional information, the

set of contributing establishments to a certain cell is considered common

knowledge. Hence, in the case of one dominating contributor, disclosure is

very well possible. In the case of n dominating contributors, the disclosure

scenario is that n − 1 dominating contributors may pool their knowledge

to identify the n-th contributor, but as n increases the probability of co-

operation decreases, also lowering the probability of disclosure. Usually,

cooperation between three or four and more entities is considered unlikely.

For the (n,k)-dominance rule, frequently used values are n = 3 and k =

70%, implying that cooperation between 2 entities is considered possible,

but cooperation between 3 entities is considered unlikely to happen.

In Table 2.3, a sensitive cell, according to a (3,70%)-rule is shown. For k

= 70%, this cell fails the dominance rule, since entities A, B and C together

contribute 80% of the cell total.

Entity Value

A 4000
B 2500
C 1500
D 850
E 600
F 550

total 10000

Table 2.3: The structure of a sensitive cell

As the (n,k)-dominance rule is the sensitivity measure used at Statistics

Netherlands, it will be investigated in more detail. Afterwards, the pq-

prior/posterior rule will be described in less detail. First, however, some

results on the safety of individual respondents are deduced.

2.6.1 The safety of individual respondents

The contribution of a respondent to a cell can be estimated by other con-

tributors to that cell. These respondents form a coalition and this coalition
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can subtract its joint contribution D from the published cell total T . This

results in an upper estimate of the largest contribution. To measure the

effectiveness of this estimation, the following definition is used:

Definition 3 A respondent is (p,n)-safe from a coalition of n − 1 respon-

dents if any coalition of n−1 respondents can not estimate that respondent’s

contribution with an accuracy of up to p percent.

The p-percent safety requirement states that the estimation Ya of the

contribution Xa of respondent a should be at a distance of p percent of Xa.

Thus the accuracy p is defined by

Definition 4 Ya = T −D = (1 + p)Xa ⇔ p = T−D
Xa

− 1.

if Ya is an upper estimate of Xa. This definition implies that small p gives

a good approximation. For analyzing the safety of individual respondents,

the following theorem is very useful:

Theorem 1 If the largest respondent in a cell is (p,n)-safe from a coalition

of the 2nd, . . . , nth respondents, then every respondent in that cell is (p,n)-

safe from every coalition of size n− 1.

To see this, some lemmas are deduced and finally combined to prove this

theorem.

First, consider the case where the estimated respondents are contributors

1 resp. a. The size of the coalition is n− 1.

Lemma 2 If the largest contribution in a cell is (p, n)-safe from a given

coalition of size n − 1, then any respondent in that cell is (p,n)-safe from

that coalition.

Proof: The estimation Y1 of X1 by a coalition Dn−1 of size n − 1, where

Dn−1 denotes the sum of the contributions of the n− 1 intruders, is

Y1 = T −Dn−1

so respondent 1 is not (p, n)-safe if

Y1 ≤ X1 + pX1 ⇔ T −X1 −Dn−1 ≤ pX1 (2.2)
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In the general case, where the coalition estimates Xa, the estimate is

Ya = T −Dn−1

This means that respondent 1 is not (p, n)-safe if

Ya ≤ Xa + pXa ⇔ T −Xa −Dn−1 ≤ pXa (2.3)

As the contributions Xi are ordered according to size,

Xa ≤ X1 ⇒ T −Xa −Dn−1 ≥ T −X1 −Dn−1 (2.4)

Suppose equation (2.2) fails, i.e. the largest possible coalition cannot esti-

mate the largest contribution to within p percent of its real value. Then,

using the ordering on the Xi’s, and using equations. (2.2), (2.3) and (2.4),

we find

T −Xa −Dn−1 ≥ T −X1 −Dn−1 ≥ pX1 ≥ pXa ⇒

T −Xa −Dn−1 ≥ pXa

This implies that whenever a coalition of n− 1 contributors cannot approx-

imate the largest contributor, then such a coalition of n − 1 respondents

cannot approximate any contributor. 2

Second, consider the case where the size of the coalition is n−1, and the

coalition is formed by the 2nd, . . . , nth contributors respectively any n − 1

contributors, trying to estimate X1.

Lemma 3 If the largest contribution in a cell is (p, n)-safe from a coalition

of size n− 1 of contributors 2, . . . , n to that cell, then the largest respondent

is (p,n)-safe from any coalition of size n− 1.

Proof:

The estimation Y1 of X1 by a coalition of respondents 2, . . . , n is

Y1 = T − T2:n

so respondent 1 is not (p, n)-safe if

Y1 ≤ X1 + pX1 ⇔ T − T2:n ≤ X1 + pX1 ⇔
∞∑

i=n+1

Xi ≤ pX1 (2.5)
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In the general case, where any coalition estimates X1, the estimate is

Y1 = T −Dn−1

where Dn−1 denotes the sum of the contributions of the n − 1 intruders.

This means that respondent 1 is not (p, n)-safe if

Y1 ≤ X1 + pX1 ⇔ T −X1 −Dn−1 ≤ pX1 (2.6)

As the contributions Xi are ordered according to size,

T2:n ≥ Dn−1 ⇔ T −X1 −Dn−1 ≥ T −X1 − T2:n (2.7)

because the left-hand side of (2.7) always contains the largest n−1 available

respondents. Suppose equation (2.5) fails, i.e. the largest possible coalition

cannot estimate the largest contribution to within p percent of its real value.

Then, using the ordering on the Xi’s, and using equations. (2.5), (2.6) and

(2.7), we find

T −X1 −Dn−1 ≥ T −X1 − T2:n ≥ pX1 ⇒ T −X1 −Dn−1 ≥ pX1

This implies that whenever a coalition of the 2nd, . . . , nth contributors cannot

approximate the largest contributor, then no coalition of n− 1 respondents

can approximate the largest contributor. 2

Finally, combining Lemmas 3 and 2 gives that if the largest contribu-

tion is (p, n)-safe from a coalition of the 2nd, . . . , nth respondents then the

largest contribution is (p, n)-safe from any coalition, and this implies that

any respondent is safe from any coalition. This yields Theorem 1.

2.6.2 The protection offered by the (n, k)-dominance rule to

individual respondents

Although the (n,k)-dominance is quite standard, the protection level it offers

at the respondent level is not directly clear. This is because the (n,k)-

dominance rule does not entirely account for the internal structure of the

cell. It compares the relative size of the sum of the n largest contributors

to the size of the cell total, but it does not account for the relative size of

largest contributor versus the other n− 1 largest contributors or versus the

remaining contributors.
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contributor cell 1 cell 2

1 70% 40%

2 5% 35%

remainder 25% 25%

Table 2.4: The compositions of two cells with equal sensitivity but different internal

structures

In Table 2.4, the compositions of two cells with equal sensitivity are

shown, but intuitively, the left-hand cell is more sensitive than the right-hand

cell. The reason for this is as follows. Suppose that the largest ’coalition’

which is likely to be formed has size one for both cells, i.e., we are interested

in the estimate contributor 2 can make for contributor 1. In the left-hand

cell, the subtraction of contribution 2 gives an estimate of contribution 1

with an accuracy of at most pleft = 100−5
70 − 1 = 36%. In the right-hand

cell, this estimate is at best pright = 100−35
40 − 1 = 63%. Intuitively, the

conclusion is that the left-hand cell is more sensitive than the right-hand

cell, as pleft < pright and a low p implies a good approximation. This is in

contradiction with the conclusion we draw from the dominance rule, since

according to this rule both cells are equally sensitive.

The contradiction is caused by the fact that the (n,k)-dominance rule

only looks at the sum of the dominant contributions and the cell total,

while protection against a coalition should be offered by the remaining, non-

dominating respondents to the cell. Therefore, the protection level offered

also depends on the internal cell structure. Hence, the dominance rule does

not specify the accuracy with which individual contributors to an unsafe

cell can be deduced. We can however deduce a minimum protection level

guaranteed by using an (n, k)-dominance rule.

Theorem 4 If an (n, k)-dominance rule is satisfied, this implies that all

individual respondents are ( 1
k − 1, n)-safe

This means that if an (n, k)-dominance rule states that a cell is safe,

then each individual respondent in that cell is ( 1
k − 1, n)-safe. Hereby the

dominance rule is translated into a safety requirement on individual respon-

dents.
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Proof: A cell is safe according to the dominance rule if

T1:n < kT ⇔ X1 + T2:n < kT (2.8)

The (p, n)-safety requirement states that every respondent is safe if

T − T2:n > X1(1 + p)

If p = 1
k − 1, this results in

T − T2:n > X1(
1
k
) ⇔

X1 + kT2:n < kT (2.9)

Combining this with equation (2.8) gives

X1 + kT2:n < X1 + T2:n < kT

because k < 1. This means that if the (n, k)-dominance rule is satified,

every respondent is ( 1
k − 1, n)-safe.

As was shown in Table 2.4, the worst case scenario is that the largest

contribution makes the cell sensitive on its own, i.e. the cell is not only

sensitive according to an (2, k)-rule, but is also sensitive for an (1, k) rule.

So, in case n = 1, equation (2.8) reduces to

X1 + 0 < kT ⇔ X1 < kT

and equation (2.9) also reduces to

X1 + 0 < kT ⇔ X1 < kT

This means that in the worst case, the (n, k)-dominance rule exactly guaran-

tees ( 1
k−1, n) safety to individual respondents. The quality of the estimation

that is made by the coalition is

pmin =
T −D

X1
− 1 =

T − 0
kT

− 1 =
1
k
− 1 2 (2.10)

The conclusion is that using a (n,k)-dominance rule does not uniquely

determine a protection level provided to individual respondents. The pro-

tection depends on the internal structure of the cell. However, using a
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(n,k)-dominance rule implies a minimal protection level, being the protec-

tion level offered to a respondent in the intuitively most unsafe cell at a

dominance rule safety level of k. Therefore, p is fixed at this minimum pro-

tection level pmin, and used for every cell. In this way, the (n, k)-dominance

rule indirectly imposes a restriction on the safety of individual respondents,

independently of the internal cell structures.

2.6.3 The (p,q)-prior/posterior rule

When using the (p,q)-prior/posterior rule, it is assumed that each respon-

dent has some prior knowledge about the contributions of the other respon-

dents. More precisely, it is assumed that each respondent can estimate all

the other contributions with an accuracy of up to q percent. This expresses

the idea that the intruder is not totally uninformed about the order of mag-

nitude of the contributions of other respondents. The intruder can combine

its prior knowledge with the published cell totals (the posterior knowledge)

to make an estimate of the contributions of other respondents. The (p,q)-

prior/posterior rule identifies a cell being sensitive if a intruder, using his

prior and posterior knowledge, is able to estimate another respondent’s con-

tribution with an accuracy of up to p percent, where p < q. (remember that

small p, q imply a good estimate. When q < p, the intruder already knows

more than allowed). In this disclosure scenario, the intruder can subtract

his own contribution, and his estimates of the other contributions from the

published cell total to estimate the contribution of the largest contributor.

The estimate of the contribution of respondent i is at least equal to Xi−qXi,

i = 3, . . . ,∞. Therefore,

E[X1] =
∞∑
i=1

Xi −X2 −
∞∑
i=3

Xi(1− q) = X1 + q
∞∑
i=3

Xi

is an upperbound for the estimate of the largest contribution. Again, the

cell is considered sensitive if E[X1] ≤ X1 +pX1, and again it suffices to only

consider the case for which the second-largest contributor tries to disclose the

largest contributor, by an argument similar to that for the (n,k)-dominance

rule. Note that if q = 1, i.e. the intruders do not have any prior knowledge,

this degenerates to (2.5). The sensitivity measure corresponding to the
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(p,q)-prior/posterior rule is

Sp;q(X) = pX1 −
∞∑
i=3

qXi (2.11)

For a detailed analysis of the mathematical properties of upper sensitivity

measures see Cox [6].
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Chapter 3

Source Data Perturbation

3.1 Basic principles

Often, many tables are generated from one microdata file. Safety regulations

demand that these tables are safe, and this can be accomplished by applying

disclosure control methods at the table level or at the microdata level (see

Section 2.4 for an overview of these methods). These methods have some

disadvantages. Table-level methods do not recognize the interrelationship

between tables imposed by the underlying microdata. This means that, for

example, when two (almost) equal cells are found in two tables that are

generated from the same microdata, one may be altered in some way by a

disclosure control measure, and the other may be altered in yet another way

by another disclosure control measure. Hence, applying disclosure control

methods on a table-by-table basis is likely to create inconsistencies. This

creates very complex problems when suppressing cells: once a cell is sup-

pressed, it also has to be suppressed in every other table it appears. The

data disseminator has to keep track of which cells were suppressed, and the

problem of minimizing the number of secondary suppressions can also get

very complicated.

On the other hand, disclosure control methods that operate at the mi-

crodata level guarantee consistency across tables. However, now it is not

clear when generated tables are sufficiently protected by the microdata level

disclosure control methods. It is desired that each table is safe according

to some safety measure, while the data still must contain some information
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value for their users. This means that the data must not be changed too

much as a result of the disclosure control methods used. Microdata disclo-

sure control methods do not account for the specific properties of the tables

involved. Another disadvantage of using disclosure control measures at the

microdata level is that the data is changed permanently.

Therefore, the conclusion is that table level-methods do not account for

their underlying microdata (and hence for other tables), and that microdata

level-methods do not account for the tables generated from that microdata.

Therefore some link has to be set up between the tables and the microdata,

and disclosure control measures have to be developed using this link. To

this end, the data disseminator defines a calibration set of tables that are

to be published, and that therefore have to be safe. Then each table is

investigated on how much it has to be altered to be safe, and this implies

that the respondents contributing to that table have to be changed also. This

is done by multiplying their contribution by some weight factor, and this

weight factor is chosen according to some safety measure that evaluates the

safety of the now perturbed tables. This way, each respondent is assigned its

own weight factor. In any case, the original microdata is not changed. The

perturbation of the data is applied upon tabulation, and the only alteration

of the microdata is the addition of the perturbation factors, but these could

also have been saved to a separate file.

The multiplicative weight factors can only be applied to quantitative

variables. The multipliers can also be applied to frequency counts, but

not to categorical variables. In this case, multiplicative noise factors can

best be seen as compared to sample weights. In a frequency count table,

the number of observations in a cell is multiplied by the sample weight to

obtain an estimation of the population total for that cell. It makes sense

to perturb this estimation by multiplicative noise. However, a perturbed

frequency count table may be subject to table rounding, because the counts

are no longer integers (see Section 2.4.1). Therefore, perturbing frequency

count tables may have consequences.

If the attributes can only be represented by a discrete set of values,

e.g. male or female, it makes no sense to perturb these scores because a

person is either male or either female, not something in between. Therefore
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categorical variables cannot be perturbed. For SDP however, this is not a

problem when generating tables for publication, because the cells in those

tables are always filled with scores on quantitative attributes. The scores

on the qualitative attributes are used to span the tables. Therefore, these

scores are not supposed to be perturbed.

In general, SDP methods have the following properties:

• a multiplicative weight factor is added to the microdata

• when generating tables from the microdata, contributions are weighted

by this factor

• weighted tables generated from the microdata are consistent and safe

• sensitive cells are perturbed by the weight factors; nonsensitive cells

are left relatively unaffected

• no bias is introduced into the table data

• the original microdata is not changed

• the weight factors can only be applied to quantitative variables

In short, the microdata is perturbed by assigning a weight factor to each

respondent in the microdata file. Because the perturbation factors are ap-

plied at the microdata level, the tables generated from the microdata are

mutually consistent. Also, because the perturbation is implied by some

safety measure that evaluated the disclosure risks of the tables in the pre-

defined set of tables, these tables are safe and can be published. Naturally,

the safety of the entire set of tables is checked prior to publication, because

a combination of tables may still induce disclosure. See Section 6.2 for more

details.

The safety measure used has to account for the fact that the contribu-

tion of individual respondents is protected by the use of protective noise,

as intruders can deduce less information from perturbed figures than from

the real figures. The (n,k)-dominance rule and the (p,q)-prior/posterior rule

introduced in Section 2.6 do not account for the use of protective noise. How-

ever, it is desirable to base the safety level of a table on the (n,k)-dominance
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rule, as it is currently the sensitivity measure at Statistics Netherlands. This

issue will be elaborated in Section 4.1.

Generally, SDP methods consist of two stages:

1. Find the amount of perturbation needed for the tables in the prede-

fined set of tables

2. Find the amount of perturbation needed for all individual respondents

in the microdata, given stage 1.

Several methods can be used to determine the how much the tables in

the set of tables should be defined. These methods will be described in

Chapter 4. Also, several methods can be used to translate this table level

perturbation to the microdata level. These will be described in Chapter 5.

First however, the standard ZES method will be described. This method

can be seen as a member of the family of SDP methods, although it skips

the first stage.

3.2 The ZES method

In this section, the method of Zayatz, Evans, Slanta [7] is evaluated. This

method assigns respondents weight factors that alternately are equal to (1 -

µ ) and (1+µ), where µ is the mean percentage of noise added. However, not

exactly µ percent of noise is added, but rather a percentage that is drawn

from some distribution centered around µ. Because of the random way

of assigning perturbation factors, noise in nonsensitive cells is expected to

cancel out, while this is not the case for sensitive cells, as will be shown. First

the percentage of noise added is considered to be given (e.g. 10 percent),

but later we will try to find ways to let µ depend on the predefined set of

tables that are to be generated from the microdata. However, if no set of

tables is predefined, the ZES method is very appropriate.

To perturb an entity’s data by an amount of noise of 10%, a multiplier

of about 0.9 or about 1.1 could be assigned to each entity. Then, upon

tabulation each entity’s contribution is multiplied with this multiplier. To

hide the exact amount of perturbation for possible intruders, multipliers are
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with equal probability (i.e. 1
2) drawn from some distribution centered around

(1−µ) or from some distribution centered around (1+µ). To ensure that the

expected value of the applied multipliers equals 1, it is very important that

the distribution at (1 − µ) and the distribution at (1 + µ) together form a

symmetrical distribution around 1. Hence, the perturbed value is computed

by

perturbed value = true value ∗multiplier (3.1)

where multiplier is drawn from a bimodal distribution, for instance

multiplier ∼ 1
2
N(1− µ, σ) +

1
2
N(1 + µ, σ)

where N(µ, σ) is the Normal distribution. The multiplier of respondent i is

denoted by mi = 1± ri.

This is the case for census data; for sample survey data see Section 3.2.2.

An example of a bimodal distribution is sketched in Figure 3.1.

(1− µ) (1 + µ)1

Figure 3.1: bimodal distribution centered around (1− µ) and (1 + µ)

Any distribution can be used to compose such a bimodal distribution,

such as the normal distribution, or the beta distribution. For details on

generating random variates, see Law and Kelton [14]. Zayatz, Evans, and

Slanta [7] try several distributions and find no consistent differences.
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3.2.1 The influence of perturbation on sensitive cells versus

nonsensitive cells

By definition, a nonsensitive cell contains a relatively large number of con-

tributors (at least 4, when n = 3 in the dominance rule), and because the

probability of receiving positive directed noise equals the probability of neg-

ative directed noise, it is to be expected that about half of the contributions

is inflated and that the other half is deflated. In short, the alternately addi-

tion of positive and negative directed noise cancels itself out when aggregat-

ing perturbed company values, and consequently the expected value of the

noise added is 0 (i.e., the expected value of the used multipliers equals 1).

However, the addition of noise induces an increase of variance, see Section

3.2.3.

For sensitive cells, where one company is dominating the other contribu-

tors, the relative large size of the dominating entity assures that the overall

amount of noise added to the cell is also relatively large. For example, in

Table 3.1, company A dominates companies B, C, and D, by contributing

80% of the cell total. Naturally, the more dominant the dominator is, the

more the total change in cell value resembles the amount of noise added to

the dominating company.

Sensitive cell Nonsensitive cell

resp. value weight perturbed value resp. value weight perturbed value
A 8000 0.89 7120 H 2700 0.89 2403
B 850 1.11 943.5 I 2400 1.11 2664
C 600 1.12 672 J 2600 1.12 2912
D 550 0.91 500.5 K 2300 0.91 2093

total 10000 (-7.6%) 9236 total 10000 (+0.7%) 10072

Table 3.1: influence of perturbation on sensitive and nonsensitive cell

It is not guaranteed that sensitive cells always receive a high amount

of noise. Suppose for example a cell contains two dominant, equally sized

contributors. If one of these two is perturbed upward, and the other is

perturbed downward, then the cell is not likely to receive much perturbation.

However, as we will see in Section 7.2, in general sensitive cells are much

more likely to receive noise than nonsensitive are.
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3.2.2 Census data versus sample survey data

With census data, the sample consists of all companies present in the pop-

ulation. Because it is quite an effort to include all companies, often only

part of the population is included in the sample. In a sample survey, the

contribution of each company is weighted inversely proportional to the prob-

ability of inclusion in the sample. The sample weights are deduced from the

inclusion probabilities, but they are also corrected for nonrespons. Large

companies have a larger probability of being included in the sample, so they

end up having smaller sample weights. The motivation for this is that large

companies are rather unique and ignoring them would prohibit the sample

from accurately representing the real population. On the other hand, there

are a lot of smaller companies, and one such small company could repre-

sent a number of other small companies with similar properties. Suppose

for example that in a population there are 5 companies of size (approxi-

mately) 8000 employees. Then if one of those companies is chosen to enter

the sample, its contribution is multiplied by 5 as to represent the total value

of companies that are of that size. Thus companies with large weights are

already somewhat protected because their large weight implies that there

are a lot of other companies of similar size in the population, thus lowering

the probability of identification. Large companies with small weights need

some extra protection.

When adding noise to sample survey data, these weights are accounted

for by adding noise as follows:

perturbed value = true value ∗ [multiplier + (weight - 1)] (3.2)

The sample weight of respondent i will be denoted by wi.

Intuitively, noise is only added to the company in the sample, and not to

the other (weight - 1) multiples that are not included in the sample. For

companies that are unique in the population (when using the dominance

rule the risky ones), the weight factor will be close to 1, degenerating to the

census case. Contributions by companies with small weights in this fashion

receive a lot of noise, while companies with large weights are not severely

perturbed, see example 4.

As is clear from example 4, dominant company A receives a lot of noise,

while companies B, C and D who have large weights receive a very small
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true contributions perturbed contributions

resp. value x weight value x multiplier + weight-1 change

A 8000 x 1 = 8000 8000 x 0.89 + 0 = 7120 11%

B 850 x 6 = 5100 850 x 1.11 + 5 = 5194 1.8%

C 600 x 8 = 4800 600 x 1.12 + 7 = 4872 1.5%

D 550 x 10 = 5500 550 x 0.91 + 9 = 5451 0.9%

cell total 10000 23400 22636 3.3%

Table 3.2: including sample weights

amount of noise. As company A does not get much protection from its

weight, this is a favorable effect.

Notice however that this cell is not sensitive: for the weighted contribu-

tions, company A contributes 34% of the cell total, hence explaining the low

cell value change of 3.3%.

In the next section the statistical properties of this method are mathe-

matically elaborated.

3.2.3 The effects of applying multiplicative noise

Now the method of perturbation is intuitively clear, it is time to mathemat-

ically prove the demonstrated properties of the ZES method. Also, because

the perturbation of the data induces a loss of information, the increase of

the variance due to the addition of the noise is evaluated as a measure of

this information loss.

Since the distribution of the multipliers is symmetric around 1 and the

multipliers are in expectation equal to one, the expected value of the amount

of noise added to a respondent is zero. Now we will show that the expected

value of the amount of noise in any cell is also zero.

Theorem 5 The ZES perturbation procedure does not introduce any bias

into the cell values.

Proof: Suppose we are dealing with census data (i.e. all companies are

included). Because E[mk] = 1 for all respondents k,

E[TN ] = E[
∑

k mkXk] =
∑

k XkE[mk] =
∑

k Xk = T
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for each k in each cell in each table. This is the case for census data. For

the more general case of sample survey data, let T̂ =
∑

k Xkwk be the

unperturbed cell estimate. Let T̂N =
∑

k(mk + wk − 1)Xk be the noise-

added estimate. Now E[T̂N ] = E[
∑

k(mk + wk − 1)Xktk] where tk = 1 if

the kth sampling unit is chosen, 0 otherwise. Assume P [ti = 1] = πi and

P [ti = 0] = 1−πi. Remember that the sample weights wk are the reciprocals

of πk, i.e. wk = 1
πk

. So E[T̂N ] =

=
1∑

i=0

E [
∑

k(mk + wk − 1)Xktk | tk = i]P [tk = i]

= E [
∑

k(mk + wk − 1)Xktk | tk = 1]P [tk = 1]

+E [
∑

k(mk + wk − 1)Xktk | tk = 0]P [tk = 0]

= E [
∑

k(mk + wk − 1)Xkπk + 0 ∗ (1− πk)]

=
∑

k Xkπk(wk − 1) + XkπkE [mk]

=
∑

k Xkπk(wk − 1) + Xkπk =
∑

k Xkwkπk = T 2

Now it is proved that E[TN ] = E[T̂N ] = T for census data and for sample

survey data. For theory on computing expectations by conditioning, see e.g.

Ross [17].

To compute the increase of variance induced by the perturbation, let e =

T̂N − T̂ . We have already proved that E[e] = 0. Also, since COV
[
T̂ , e

]
= 0,

σ2
[
T̂N

]
= σ2

[
T̂ + e

]
= σ2

[
T̂
]
+ σ2 [e] + 2COV

[
T̂ , e

]
= σ2

[
T̂
]
+ σ2 [e] + 0 = σ2

[
T̂
]
+ E

[
e2
]
− (E[e])2 = σ2

[
T̂
]
+ E

[
e2
]

An unbiased estimator of the variance is

σ̂2
[
T̂N

]
= σ̂2

[
T̂
]
+ e2 = σ̂2

[
T̂
]
+
(
T̂N − T̂

)2

Notice that for census data, the first part of the right-hand term disappears,

as the census value is not an estimate like the sample survey value is. Hence,

for census data the unbiased estimator equals e2. For sample survey data,

σ̂2
[
T̂
]

can be found using the Horvitz-Thompson estimator T̂HT for T :

T̂HT =
n∑

i=1

Xi

πi
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given that πi > 0, (i = 1, 2, . . . , N), where n is the sample size and N is the

population size. Formulas for the variance of T̂HT are given in Cochran [5].

Applying the multiplicative noise to the data results in altered tables.

How much the tables are altered, can be computed by calculating the loss

of information.

The increase of variance can be used to measure the information loss. As

the added noise increases the variance of the cell totals by e2, the information

loss of cell i amounts to e2
i = (T̂i

N − T̂i)2. This was shown in the previous

section. The total loss of information can be defined as the sum of the

information losses over all cells.
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Chapter 4

Perturbing tables

The first step of SDP methods is to look at the tables in the predefined set

of tables to determine the amount of perturbation needed for those tables

to be safe. The desired perturbed cell totals in those tables can be found

using several methods. First, a sensitivity measure for perturbed cells is

deduced. Using this sensitivity measure, the amount of perturbation needed

for each cell can be determined. Also, an approach based on the method

of Iterative Proportional Fitting can be used to determine the desired cell

totals. Because this method controls the marginal cells, it will be referred

to as the MARG method.

4.1 Measuring the safety of perturbed cells

When noise is added to a cell, the dominance rule is not applicable anymore,

since it presumes unperturbed data. The dominance rule does not account

for the extra protection offered by the added noise. In fact, the sensitivity

of a perturbed cell, measured by the dominance rule, differs only slightly

from the sensitivity of the original cell, and the direction of the difference

depends on the randomness of the noise assignment process. So according

to the dominance rule, noise addition could in fact increase the sensitivity

of a cell. Therefore a suitable safety measure for perturbed cells has to be

found. This safety measure should be deduced from the dominance rule, as

the dominance rule is the sensitivity measure used at Statistics Netherlands.

A solution to this problem is to use the (p, n)-safety requirement, implied by

using a (n,k)-dominance rule (see Theorem 1). This requirement states that
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the largest contributor of a cell is not allowed to be approximated to within p

percent of its value, and the value of p is deduced from the (n, k)-dominance

rule used. The link between k and p was shown in Section 2.6.2. To find a

sensitivity measure for perturbed cells, a reasoning is followed similar to that

of the (p,q)-prior/posterior rule. That is, the (n,k)-dominance rule is used

to define how close the largest contribution is allowed to be approximated,

and then a reasoning similar to that of the (p,q)-prior/posterior rule is used

to get to that approximation. First, it is shown how to find a lower and an

upper estimate for the largest contribution, such that the lower estimate is

as far from the largest contribution as the upper estimate is, i.e. X1 lies in

the middle of the interval (Y lower
1 , Y upper

1 ). If this is the case, inflation has

the same effect as deflation. Then a sensitivity measure for perturbed cells

can be deduced.

Suppose a cell has a cell total T . Suppose a coalition of the 2nd to nth

largest contributors wishes to disclose the the contribution of the largest

contributor. Also suppose the perturbed cell total equals either T+
N or T−N ,

for inflated or deflated cell totals respectively. The coalition of intruders

can subtract their own contributions from the perturbed cell total, and they

can also subtract their estimates of the remaining contributors from the

perturbed cell total. The estimation of contribution i is at least equal to

Xi(1− q), and at most equal to Xi(1+ q). Thus, the coalition can construct

an interval around X1:

X1 ∈
[(

T−N −D − (1 + q)R
)

,
(
T+

N −D − (1− q)R
)]

By this definition, the interval around X1 is smaller for smaller q, which

means that if the coalition can make a relatively good approximation of the

contributions, they can, evidently, also make a relatively good approxima-

tion of X1. This can be visualized as follows:

T−N −D − (1 + q)R X1 T̃ T+
N −D − (1− q)R

- �smaller interval for smaller q

where

D =
n∑

i=2

Xi = joint contributions of the coalition of intruders

R =
∞∑

j=n+1

Xj = joint contributions of remaining contributors
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This interval can be shown (in expectation) to be symmetrical around

X1, that is, the distance of X1 to the upperbound equals the distance of X1

to the lowerbound of the interval:

X1 − lowerbound =

= X1 − T−N + D + (1 + q)R

= T − T−N + qR (4.1)

For the upperbound,

upperbound−X1 =

= T+
N −D − (1− q)R−X1

= T+
N − T + qR (4.2)

The expressions in equations (4.1) and (4.2) are equal, if the multipliers

are chosen from a symmetrical distribution with mean 1. In that case, the

probability that a cell total is perturbed upwards equals the probability

that a cell is perturbed downwards. In both cases the amount of noise is

equal, that is, T+
N − T = T − T−N . So, the safety interval is in expectation

symmetrical around X1. This is very useful, since now inflation and deflation

of the cell total have the same effect on the safety of the largest respondent.

This is why the reasoning similar to that of the (p,q)-rule is used, since else

the interval around X1 would be shifted to the right. This is caused by the

fact that the intruders subtract their contributions from the cell total, but do

not take the remaining contributors into account. Therefore, their estimate

lies above the true value X1, and the interval is not centered around X1

(it lies upward, towards T ). If that were the case, the amount of deflation

would have to be larger than the amount of inflation to provide sufficient

distance to X1. This would destroy the unbiasedness of the noise.

To translate the safety interval found into a sensitivity measure, we can

use the fact that the estimate of X1, deduced by the intruders should not

approximate X1 up to p percent. On the upperside of the interval, the cell

is safe if

T+
N −D − (1− q)R > X1 + pX1 (4.3)
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The information available to the coalition of intruders in the left-hand side

of equation (4.3) is compared to the safety requirement in the right-hand

side of equation (4.3). In the case of sample survey data, determining the

information that is available to the intruders is somewhat more intricate.

The coalition knows the weighted and perturbed cell total T̂N , its own (un-

weighted) contributions D, and its estimation of the remaining contributors

(1 − q)R̂. Note that the respondents represented by the sample weights of

the largest n contributors are included in the set of remaining contributors

R̂ for as far as the intruders know. Therefore,

R̂ =
∞∑

i=n+1

wiXi +
n∑

i=1

(wi − 1)Xi

Now (4.3) evaluates to

T̂+
N −D − (1− q)R̂ > X1 + pX1 ⇔

∞∑
i=1

(wi + ri)Xi −
n∑

i=2

Xi − (1− q)R̂−X1 − pX1 > 0 ⇔

−
∞∑
i=1

riXi + pX1 + q
n∑

i=1

Xi − q
∞∑
i=1

wiXi < 0 ⇔

−
∞∑
i=1

riXi + pX1 − q(T̂ −D −X1) < 0

The cell total was perturbed upwards to begin with, so
∑∞

i=1 riXi > 0.

Therefore, −
∑∞

i=1 riXi < 0.

This expression could be used as a sensitivity measure SN (C) for per-

turbed cells. Note that for w = 1 (the census case) and if E[ri] = 0, this

degenerates into the sensitivity measure Sp;q(C) for the (p,q)-prior/posterior

rule of Section 2.6.3. The deduced sensitivity measure SN (C) accounts for

the protection offered by the noise added to the data:

S+
N (C) = −

∞∑
i=1

riXi + pX1 − q(T̂ −D −X1)

In fact this measures the distance between the upperbound of the desired

safety interval and the actually offered upperbound of the safety interval.

Note that S+
N (C) is decreasing in ri, the added noise. This means that noise
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addition induces a decrease of the sensitivity of the cell. Also note that

S+
N (C) is increasing in p, which implies that a more strict safety demand

results in a higher sensitivity. Moreover, S+
N (C) is decreasing in q and in

w, as (T̂ −D −X1) is always greater than or equal to 0. This implies that

these parameters hamper disclosure. This reflects that the sample weights

also provide some protection to individual respondents. Similar reasoning

can be applied to the lowerside of the interval, and this results in S−N .

S−N (C) =
∞∑
i=1

riXi + pX1 − q(T̂ −D −X1)

The cell total was perturbed downwards to begin with, so
∑∞

i=1 riXi < 0.

This means that S−N (C) is decreasing in r. Therefore, S−N (C) is equal to

S+
N (C). As the probability of a cell total being inflated equals the probability

of a cell total being deflated, and as the amount of inflation in expectation

equals the amount of deflation, it suffices to use

SN (C) = −
∞∑
i=1

riXi + pX1 − q(T̂ −D −X1)

Again, for SN (C) > 0, cell C is considered to be sensitive.

If the reasoning of this section is used to extend the reasoning of section

2.6.2, the worst case accuracy of equation (2.10) is

pmin = T−D−(1−q)R
kT − 1 = T−0−(1−q)(1−k)T

kT − 1

= 1−(1−q)(1−k)
k − 1

(4.4)

This reflects that if the intruder can make a good approximation before any

publication of data (i.e., q is small), the quality of the estimation is higher.

The parameter q is not given from the (n,k)-dominance rule. However, since

p can be deduced from k (see Section 2.6.2), and since it is required that

p < q ≤ 1, we can choose q dependent of p, for instance q = p + 1−p
2 .

The desired cell totals can be deduced from this sensitivity measure.

For each sensitive cell, this sensitivity measure gives a safety interval. The

desired cell total is one of the two endpoints of the interval. By choosing

either one with equal probability, roughly half of the weighted cell totals in

the row/column will be higher than its real value, while roughly the other

half will be smaller than its original value. Therefore, the row/columntotals
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are not expected to deviate too much from their real values, which is a

desirable effect. Suppose all weighted cell totals would be chosen to be

equal to their accompanying upperbound, then all the protective noise would

accumulate in the marginal cells. This is not very desirable. Naturally,

relative differences in cell total sizes also have to be accounted for. The

decision whether a cell total is chosen higher or lower than its original cell

total, can be based on some kind of pattern. For instance, some of the

patterns possible are:

+ - + - + + - -
- + - + - - + +
+ - + - or - - + +
- + - + + + - -

On the upperside of the interval, the cell is safe if

S+
N (C) < 0 ⇔

∞∑
i=1

riXi > pX1 − q(T̂ −D −X1) (4.5)

The right-hand side of this inequality is the desired amount of perturbation.

The desired cell total b then is equal to b = T̂ + pX1 − q(T̂ −D −X1). On

the lowerside, the cell is safe if

S−N (C) < 0 ⇔

∞∑
i=1

riXi < q(T̂ −D −X1)− pX1 (4.6)

In this case, the desired cell total b is T̂ −pX1 +q(T̂ −D−X1). Of course, if

the cell isn’t sensitive, the length of the safety interval is zero. The desired

amount of perturbation then is zero and the desired cell total is identical to

the original cell total.

4.2 Using IPF: the MARG method

The perturbed cell totals can also be found using a method that controls the

perturbation of the marginal cells. These cells are considered more impor-

tant than interior cells, because they represent the total of some category.
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Therefore, a small amount of noise is added to the marginal cells. It is impor-

tant that the sum of the row totals still equals the sum of the column totals,

since else the table is inconsistent. The perturbation put into the marginal

cells then is spread over the corresponding rows and columns, making sure

that more sensitive cells receive more of the perturbation. This can be done

by Iterative Proportional Fitting (IPF). IPF, also known as raking, is often

used in the field of input-output analysis to estimate the input coefficients

matrix A given some total interindustry sales Ui by sector i and total in-

terindustry input purchases Vj by sector j. Entry aij of A then represents

the sales from sector i to sector j. For the exact economical background of

this procedure, see (for instance) [3] or [15]. In the statistical context, IPF

is used to make tables additive, i.e. given row totals Ui and column totals

Vj , all the entries in row i should add up to Ui and all entries in column j

should add up to Vj . For mathematical details on IPF and other methods

for making tables additive, see Fagan and Greenberg [8]. The standard IPF

method is described in appendix A.1. In this report, the two-dimensional

IPF method is described. However, the method can be applied to tables of

all dimensions.

In our context, IPF can be of use in the following way: the vectors Ui

and Vj form the desired marginal row totals and column totals. Hence, by

this approach it is possible to add noise to interior cells, while controlling

the amount of perturbation imposed on the original values of the marginal

cells, which is very desirable, because we wouldn’t like the marginal cells to

receive too much noise. Often, marginal cells are considered to be of more

importance than the interior cells. The desired marginal cell totals can be

specified to values very close to their real values. Then the noise imposed

by the deviation made is spread along the corresponding row/column, and

this can be done in such a way that somewhat more sensitive cells receive

more of the noise than less sensitive cells. Also, cells that are desired to

receive no noise at all can be forced to equal their true values. These cells

can for instance be identified by a certain minimum level of aggregation.

This approach is discussed in Section 4.2.1, and will be referred to as the

MARG method.

Another approach is to apply IPF after the ZES method is applied.
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Since marginal and interior nonsensitive cells at a high level of aggregation

are considered important, these are fixed at their real values. Then IPF

is used to make the tables additive. This approach is proposed in Zayatz,

Evans, and Slanta [7], and will be discussed in Section 4.2.2. This approach

will be referred to as the MARG after ZES or ZES/MARG method.

4.2.1 The MARG method

To find the target rowtotals u, each ith row total could be multiplied by

a perturbation factor pi. To ensure that the table converges for these new

marginals, the new target column totals have to be deduced from these cho-

sen row totals. Therefore, suppose each row i, i = 1, . . . , g of the original

matrix A is multiplied by a perturbation factor pi. By this multiplica-

tion, each row is perturbed by a perturbation factor, hence each row total

is perturbed by that factor. This means ui becomes piui for i = 1 . . . g.

The column totals are perturbed by a factor dependent of p1, . . . , pg, i.e.

vj =
g∑

k=1
pkakj , j = 1, . . . , h. Note that it’s not possible to just ’pick ’ per-

turbation factors for the column totals as we did for the row totals; these

two depend on each other, so if this dependency is neglected, no solution

can be reached and the IPF method does not converge. The exact choice for

the values of the pi’s should depend on the sensitivity of the marginal of the

corresponding row. Generally, marginal cells are not expected to be very

sensitive, so they should only be perturbed by a relatively small amount.

However, occasionally marginal cells may be sensitive, implying that the

corresponding row is entirely dominated by a few respondents, and sensitive

cells in this row should receive more noise, as they are expected to be very

sensitive. Naturally it is also possible to pick column total perturbation

factors and let the row totals depend on that choice. This depends on the

dimensions of the matrix involved. If the matrix is very rectangular (that

is, g � h), the smallest side of the matrix may accumulate a lot of noise.

The desired marginal cell totals could also be found by adding some noise

to the marginal cell of the marginal cells, i.e. the total of all contributions to

the table. This is the sum of the row totals and also the sum of all column

totals. The perturbation added to this ’super’ marginal cell then is spread

over all marginals. Then the perturbation in all row totals and column totals
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is defined, and can be spread over the table. This is a top-down approach,

that works very natural in multi-dimensional tables.

The IPF method tries to estimate the target matrix A given u and v, the

(perturbed) totals (see Appendix A.1). However, we are not interested in A,

that is, we do not want the perturbation to be equally spread over all cells

of A. We would rather have the sensitive cells receiving a relatively larger

share of the perturbation. To this end, each cell is weighted by a factor zij

that is dependent on its sensitivity. In fact the r’s of stage 1 become

rij =
ui

h∑
j=1

zijaij

while in stage 2 the s’s become

sij =
vj

g∑
i=1

zijaij

The size of the scalar assigned depends on the sensitivity of the cell. There-

fore, the weight factor zij is chosen as

zij = 1 + Sij (4.7)

where Sij denotes the safety level of cell aij .

Sij =

n∑
i=1

xi

∞∑
i=1

xi

following an (n, k)-dominance rule. So, because sij and tij are the scalars

assigned to vijaij , the aij are multiplied by sijvij and rijvij . However, any

safety measure can be used.

Also, we can demand that some cell totals receive no perturbation at all,

by replacing those cell totals by zeros in the target matrix and subtracting

them from their target marginals, and then, after the procedure, the original

cell totals are put back into the then perturbed matrix. These cells can be

chosen on the basis of their sensitivity or their level of aggregation. So, the

level of perturbation depends on the sensitivity, and the decision regarding

whether to perturb a cell or not to perturb it, could be chosen to depend on

the level of aggregation.
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4.2.2 MARG after adding multiplicative noise

An objection to the ZES method is that nonsensitive cells are also perturbed

by the multiplicative noise factors. By fixing nonsensitive cells at their true

cell totals, and by raking to the true marginals, this problem can be solved.

For example, nonsensitive cells that contain more than 1000 contributors

could be fixed at their true values. Such cells are considered more impor-

tant because they represent a lot of respondents, and for the same reason

marginal cells are also more important to table users than interior cells are.

Therefore, such nonsensitive cells are left totally unperturbed. Their noise

is spread over the other cells. Since nonsensitive cells at a high level of ag-

gregation are not supposed to receive much noise, this additional noise to

the other cells is not expected to be large.

4.2.3 MARG on several tables simultaneously

All tables in the predefined set could be raked individually, but this could

create inconsistencies across tables. Therefore, all cells could be raked simul-

taneously, to prevent the creation of inconsistencies (see [7]). This is done

by constructing a n-dimensional supertable, where n is the total amount of

distinct categorical variables that appear in any of the tables in the prede-

fined set. Each (perturbed) cell value then is inserted into the interior of

the supermatrix, dependent of its values on the n categorical values. This

implies that each cell value exactly fits into one interior cell of the super-

matrix. This supermatrix is raked to the fixed marginal values, which gives

an adjustment factor for each cell. This adjustment factor then should be

applied to all respondents contributing to that cell. A practical drawback of

this approach is that the supertable may be very large, and that it contains

a lot of empty cells.
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Chapter 5

Perturbing microdata

When, using one of the methods of the previous chapter, perturbed tables

are found, these have to be translated into perturbation factors for the

individual respondents in the microdata. This can be done by using the

sensitivity measure for perturbed cells which was developed in Section 4.1.

Also, the perturbation factors could be found by solving an optimization

problem. This approach will be described in Section 5.2. Finally, given a

perturbed cell total, the respondent’s perturbation factors can be found by

proportionally spreading the cell perturbation factor over all respondents

that contribute to the cell. This will be described in Section 5.3.

5.1 Using the SN sensitivity measure

Now that a sensitivity measure for perturbed cells has been developed (see

Section 4.1), this measure can be used to find the noise needed for each

sensitive cell. Because of the random assignment of the noise, the safety of

a noise added cell cannot be guaranteed. However, it can be demanded that

the probability that it turns out to be safe is larger than some threshold

probability d:

P [SN (C) ≤ 0] > d

This implies

P

[ ∞∑
i=1

riXi > pX1 − q(T̂ −D −X1)

]
> d
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So, the parameters needed are the µ and the σ of the Normal distribution,

and the threshold factor d. The standard deviation σ can be chosen small,

for instance equal to 0.02. If σ is too small, the perturbation factors become

too predictable. On the other hand, if σ is chosen too large, the control over

the randomly chosen perturbation factors is lost. The threshold factor d can

be set arbitrarily at 95 or 90%. The choice of the mean µ is derived below.

If the cell is sensitive, then the first contributor must be a dominant

contributor, which implies that its noise also dominates the noise factors of

the other contributors. Because we cannot make any assumptions on the

direction of perturbation of the other contributors to the cell, we assume

the other contributions are not perturbed at all. On average this is true,

because E[ri] = 0. Therefore we can use

P
[
r1X1 > pX1 − q(T̂ −D −X1)

]
> d ⇔

P

[
r1 >

pX1 − q(T̂ −D −X1)
X1

]
> d (5.1)

This can be rewritten, using the fact that the perturbation parameter

r is N(µ, σ) distributed: Suppose the standard deviation used in the per-

turbation process is σ. Let X ∼ N(0, σ). Let Xd be the value for which

P [X > Xd] equals d percent (this Xd can be found by using the inverse

Normal distribution). Also, r ∼ N(µ, σ), so r − µ ∼ N(0, σ). This implies

that

P [r − µ > Xd] = d

so now (5.1) can be used to find µ:

P [r > pX1−q(T̂−D−X1)
X1

] = d

P [r − µ > Xd] = d

⇔
µ =

pX1 − q(T̂ −D −X1)
X1

−Xd (5.2)

Substituting (2.10) into this expression gives

µ =

(
1
k − 1

)
X1 − q(T̂ −D −X1)

X1
−Xd (5.3)

48



So, the mean of the noise required for this cell is decreasing in k (high k

implies that safety demands are not very strict) and in q (high q implies

that the intruders are rather clueless about the real value of the other con-

tributions).

Since the distribution of the ri’s is given, it may be useful to derive the

distribution of
∑∞

i=1 riXi. The sum of independently Normal distributed

random variates is also Normal distributed, its mean being the weighted sum

of all individual means, and its variance being the quadratically weighted

sum of individual variances (see Section 8.3).
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Figure 5.1: Choosing µ when d = 95 percent

If µ is chosen according to equation (5.3), d percent of the randomly

generated multipliers will deviate sufficiently from 1, i.e., d percent of the

multipliers will have a deviation larger than p percent from 1. For d = 95

percent, this is visualized in Figure 5.1.

By this procedure, each cell in each table is assigned some µ that reflects

the noise level that is appropriate for that particular cell. Ideally, we would

like to have one µ for which all cells are safe to be released. Therefore it

seems logical to take the largest µ found, and to use this µmax as a basis for

the ZES method. This approach will be referred to as the ZES(µ) method.

Alternative approaches may assign different µ’s to different classes of re-

spondents. For instance, respondents that contribute to sensitive cells may
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be assigned a larger µ than respondents that never contribute to sensitive

cells. These and other possibilities are sketched in Section 5.3. For these al-

ternative possibilities, this approach increasingly deviates from the original

ZES method.

5.2 Using optimization methods

Given the desired cell totals over all tables in the predefined set of tables,

the perturbation factors for the respondents can be chosen such that the

perturbed contributions sum up to the desired cell totals. The weighted

cell totals, i.e., the sum of the weighted contributions, have to resemble

the desired cell totals as closely as possible, hence this problem can be

rewritten as a minimization problem. This approach will be referred to as

the optimization approach, or for short the OPT approach.

5.2.1 Problem formulation

The OPT approach can be formulated as a minimization problem. The

weighted cell totals have to fit to the desired cell totals as good as possible.

Therefore, we would like to solve the system of linear equations

|R|∑
j=1

mjXij = bi (1 ≤ i ≤ |C|)

This means that for each cell i, the sum of the weighted contributions∑
j mjXij has to equal the desired cell total bi. Because this is very likely

to be an inconsistent system of equations, i.e., there is no weight vector mj

that can simultaneously satisfy all |C| equations, we have to minimize the

residuals ei =
∑

j mjXij − bi. One way to do this is to minimize
|C|∑
i=1
|ei|.

This is a so called `1-problem. The problem can also be solved using other

norms, which lead to minimizing
|C|∑
i=1

(ei)
2 (the `2-problem) or minimizing

max1≤i≤|C| |ei| (the `∞-problem). The `2-problem is often solved using least

squares. Now, first the `1-problem formulation is investigated, and after

that a `2-problem formulation is discussed.
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The `1-problem formulation

The `1-optimization problem can be written as

min
|C|∑
i=1

∣∣∣∣∣bi −
|R|∑
j=1

mjXij

∣∣∣∣∣
where

|C| = number of cells in optimization

|R| = number of weightfactors/respondents in optimization

bi = desired cell total of cell i, 1 ≤ i ≤ |C|
mj = weight factor of respondent j, 1 ≤ j ≤ |R|

Xij =

 Xj if respondent j contributes to cell i

0 otherwise
Xj = contribution of respondent j

0 ≤ mmin
j ≤ mj ≤ mmax

j , 1 ≤ i ≤ |C|, 1 ≤ j ≤ |R|

This problem can be solved using linear programming (LP), but since

ei can be negative as well as positive, the problem has to be reformulated.

To this end, the following formulation is used. To this end, introduce a

variable y|R|+1 and write xj = yj − y|R|+1. Then define Xi,|R|+1 = −
|R|∑
j=1

Xij ,

to create an additional column in the matrix X. Each entry in this column

is the negated cell total for the cell corresponding to the row it is in. Also

write |ei| = ui + vi, where ui = ei and vi = 0 if ei ≥ 0, but ui = 0 and

vi = −ei if ei ≤ 0. Hence, the reformulation is

min
|C|∑
i=1

ui +
|C|∑
i=1

vi

s.t.


|R|+1∑
j=1

yjXij − ui + vi = bi (1 ≤ i ≤ |C|)

u ≥ 0, v ≥ 0, y ≥ 0

This reformulation is elaborated in Cheney & Kincaid [4].

The `2-problem formulation

The `2-problem formulation is

min
|C|∑
i=1

(
bi −

|R|∑
j=1

mjXij

)2
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An extra constraint can be added to this model:

|R|∑
i=1

mi = |R|

ensuring that the mean of the multipliers equals 1.

This problem can be solved using least squares or (convex) nonlinear pro-

gramming (NLP).

Also, another problem formulation can be applied. This problem for-

mulation focuses on the dilemma of losing information versus the amount

of disclosure protection offered. It minimizes information loss, under the

restriction of safety:

min
|C|∑
i=1

(ei)
2 =

|C|∑
i=1

(
|R|∑
j=1

mjXij − Ti

)2

s.t.


∑|R|

i=1 mi = |R|
cell i is safe (1 ≤ i ≤ |C|)

Cell i is safe if either (4.5) or (4.6) is satisfied. Information loss ei was

defined in Section 3.2.3.

5.3 Assigning perturbation factors proportionally

After the first stage of a SDP method, for each cell a perturbed cell total is

given. The noise in this perturbed cell total can be spread proportionally

over all respondents that contribute to that particular cell. This does not

necessarily means that all contributors to the cell are perturbed by the per-

turbation factor assigned to the cell total. The contributors could also be

assigned a perturbation factor proportional to their size or sensitivity. Also

some respondents could be kept unaffected by the multiplicative noise (i.e.

their perturbation factor is set equal to 1). Then the remaining respondents

receive all the noise imposed on the cells. Also, strata (i.e., classes) of respon-

dents could be defined. All respondents in a stratum then receive equivalent

multipliers. For short, the translation of the perturbation imposed on a cell

can be done in may different ways.
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Chapter 6

Disclosure scenarios for SDP

6.1 Disclosure scenarios

Using SDP can also have its drawbacks, and it is important to be aware of

them when using SDP methods. One problem arises when there are several

tables that are spanned by the same variables. This may be the case when in

one table spanned by region and industrial classification, profits are given,

and in another table, spanned by the same variables, some other variable

like returns are given. As in the perturbation process each company is as-

signed its own multiplier that is used when generating all tables, both tables

may be combined to find information about individual data and multipliers.

Once a multiplier is disclosed, that information can be used to disclosure

more information. Another example is formed by trend statistics, where

for each year some variable of interest is given in the cells. As, for each

company, the same multiplier is used every year, the ratio of, for instance,

profits in 1996 and profits in 1997 is not protected. For short, always using

the same multiplier when perturbing a company’s contributions also has its

drawbacks. It can be shown that trends and ratios are not protected if each

respondent is assigned a unique multiplier.

Another issue is that before a set of perturbed tables is released, the

disclosure risks have to be evaluated. Although sufficient perturbation is

applied to the individual cells, some cell totals may be combined to approx-

imate individual contributions. A checking mechanism to evaluate these

disclosure risks is sketched. It is investigated under what circumstances a
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respondent’s multiplier can be disclosed, and how this can be prevented.

To know to what extent Statistical Disclosure Control methods should

be applied, it is necessary to know what the possibilities of the intruders are.

If such disclosure scenarios are known, appropriate measures can be taken

to prevent those disclosure scenarios from being successful.

6.2 Checking the safety of a set of perturbed ta-

bles

In this subsection, a checking mechanism to evaluate disclosure risks is

sketched. It has to prevent that cell totals can be combined to approxi-

mate individual contributions.

Suppose respondents A, B, and C all contribute to cells 1, 2, and 3.

Suppose these cells are composed in the following way:

mAXA + mBXB = T1

mAXA + mCXC = T2

mBXB + mCXC = T3

(6.1)

This is a ”dangerous” combination of cells. For instance, a respondent

can find it’s multiplicative weight factor using the information of the pub-

lished cell totals T1, T2, and T3 (6.1) and its knowledge of its own contribu-

tion to the cells and of who are the other contributors to the cells. Suppose

XC = 120, T2 = T3 = 180, and T1 = 240. Then, from cells 2 and 3,

mBXB + mC ∗ 120 = 180

mAXA + mC ∗ 120 = 180

+

mAXA + mBXB + mC ∗ 240 = 360

Using cell 1, contributor C can deduce its weight:

mAXA + mBXB + mC ∗ 240 = 360

mAXA + mBXB = 240

−
mC ∗ 240 = 120

⇔ mC =
1
2
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Using this information, contributor C knows mAXA and mBXB and it can

approximate XA with an accuracy of (mA − 1) percent and XB with an

accuracy of (mB − 1) percent. As the weights are usually close to 1, this

would imply a disclosure of information. The protective powers of the mul-

tiplicative weights lie in aggregation, and are not intended to work on an

individual basis. The situation would be worse if all the noise factors have

the same deviation from 1, i.e. if they are all equal to (1 − µ) or (1 + µ).

If this were the case, contributor C could deduce µ and that would be very

dangerous. For instance, in the example used above, C knows that mA is

either 1
2 or 11

2 . Then C can use T2 and deduce that mA is either 80 or

240. Using possible prior knowledge, C might guess which value is the real

one. This is why the multipliers are drawn from some distribution centered

around (1− µ) or (1 + µ) respectively in the ZES method.

To prevent weights from being disclosed, the system of equations (6.1) has

to be solved. Generally speaking, (6.1) can be written as

Xm = T⇔


XA XB 0

XA 0 XC

0 XB XC




mA

mB

mC

 =


T1

T2

T3


This system can only be solved if the determinant of X 6= 0. So,∣∣∣∣∣∣∣∣

XA XB 0

XA 0 XC

0 XB XC

∣∣∣∣∣∣∣∣ 6= 0

and this evaluates into

−2XAXBXC 6= 0

So, if any of the contributions XA, XB, or XC is zero, insufficient in-

formation is available to disclose the multipliers. This is logical, since a

contribution can only be disclosed via a cell to which it contributes. Three

equations are needed to solve for three variables, so X has to be square.

By this exercise, it becomes clear that cells with few respondents con-

tributing to them should not be published, especially if these respondents

are found together in the same cells. For these ”sparsely” populated cells,
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too much information can be disclosed by individual respondents or coali-

tions. For cells with a higher number of contributors, it is more difficult to

know which respondents are contributing to those cells, and moreover X is

larger and harder to solve. Also, larger-sized coalitions are needed, while

the probability of cooperation between a number of respondents decreases

as the number of respondents increases. It is not easy to predict the prior

knowledge a intruder might have about which respondents contribute to a

certain cell, but it is to be expected that the quality of this knowledge is

decreasing in the number of contributors to the cell. Therefore, it might

only be necessary to check combinations of cells that have a small number

of contributors. For instance, cells with more than 100 contributors could

be ignored. This number is dependent of the number of tables that are to

be published and is also dependent of their properties.

6.3 Trends and ratios

Inherently to using a unique multiplicative perturbation factor for each re-

spondent, trends and ratios are not always protected, as will be shown.

Suppose two cells are composed as follows:

mAXA + mBXB = T1

mAZA + mBZB = T2

Suppose T1 = 40 and T2 = 42. Assume contributor B is the intruder.

Contributor B knows its own contributions, which are, say, XB = 20 and

ZB = 10. Therefore B knows

mAXA + mB ∗ 10 = 40

mAZA + mB ∗ 20 = 42

If contributor B has discovered its own weight, then it can deduce the ratio

of X1 and Z1. Suppose mB = 0.9. Then

mAXA

mAZA
=

XA

ZA
=

22
33

=
2
3

The ratio of XA and ZA is not protected. The intruder now knows

that the profits of year Z are 3
2 times larger than those of year Z, i.e. an

increase of 50%. Therefore, if it is desirable to protect ratios and trends,

then the multiplier mi should not be applied to all attributes of respondent
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i. The multiplier mi should be considered as a base multiplier, and each

attribute of respondent i should be multiplied with a weight factor that is

slightly different than mi. This is in fact a form of additive noise on top

of multiplicative noise. For instance, suppose the base multiplier mA of

respondent C is 1.1. Suppose XA is multiplied by 1.105 and that ZA is

multiplied by 1.098. Then the ratio is perturbed by a factor 1.105
1.098 = 1.006.

This is half a percent, which not very much on an increase of 50%. However

suppose that the ratio is very small, for example 1.05, i.e. an increase of

5%. An adjustment of 0.6% on an increase of 5% is a perturbation of 10%.

This means that smaller ratios can be better protected than larger ratios.

An alternative approach is to use two distinct multiplicative weight fac-

tors for each contribution. The first one is the old base multiplier, that is

applied to all attributes of the respondent. The second one is a multiplier

that belongs to a certain attribute, i.e., each attribute has it’s own multi-

plier. Now contribution Xi of respondent i becomes mxmiXi in stead of

miXi, Yi becomes mymiYi etc.

The disadvantage of this additive noise approach is that the weighted

attributes may no longer add up to their totals. Attention should be paid

to this issue. Suppose respondent i has three attributes Xi, Yi, and Zi.

Suppose Zi is defined as Zi = Xi + Yi. If Xi and Yi are both multiplied by

mi, then the perturbed values sum up as they are supposed to:

miXi + miYi = mi(Xi + Yi) = miZi

If they are not perturbed by the same factor, this is not the case. The

solution is to the mz implied by mx and my:

mxX + myY = mzZ ⇔ mz =
mxX + myY

Z

Evidently, mx and my should be chosen such that mz is somewhere near mx

and my.
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Chapter 7

Results from real data

In this chapter, the methods described in the previous chapter are evaluated

by applying them to real data. First the properties of the data will be

described. Then some results of the various SDP methods are presented and

evaluated. The implementation of the testing program SoDaP is discussed

in the appendix.

7.1 The data

Two datafiles were available for testing purposes. Datafile A contains about

65,000 respondents and four variables, being measure of size, geographic

location, industrial classification, and returns. Datafile B is the result of a

sample survey which contains 10,664 respondents and a wide variety of vari-

ables. For small companies (10 to 50 employees), not all companies of the

population were included in the sample survey for the sake of efficiency, i.e.

a sample was taken. Larger companies (more than 50 employees) were all

included in the sample. To compensate for not included companies (10 to 50

employees), and for nonresponding companies (in the entire sample), each

respondent included in the sample was assigned a sample weight. This im-

plies that for the smaller companies, the sample weights are generally higher

than those assigned to the larger companies, because for the larger compa-

nies the entire population, excluding nonrespondents, is included. The entire

population size is 46,932, which is the sum of the sample weights. Datafile

A is assumed to contain census data, as no weights were given. Datafile B

is very appropriate for the generation of a set of tables, since it contains a
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large amount of variables that may be used to span and fill those tables.

From datafile A, only a few tables can be generated, which are used for

small-scale testing purposes.

Both datafiles are in ASCII-format and are provided with a metadata

file, specifying which variables are in the accompanying microdata file. Also,

to maintain compatibility with the ARGUS-software, the metadata files con-

tain information concerning field starting positions and widths, and missing

value indicators. Therefore, all meta- and microdata files can also be read

by the ARGUS-software, providing the possibility to obtain feedback on

the correctness of the testing program. The functional design and the data

structures of the testing program are described in the appendix.

7.2 The results

In this section, the effects of applying SDP methods on tables generated

from real microdata are evaluated. First, the effects of SDP are investigated

for a single table, and then for a set of tables.

7.2.1 The effects on a single table

To see what happens when a SDP method is applied, a simulation is used to

evaluate the behaviour of cells in a table generated from the microdata when

SDP was applied. The table used is generated from the data of microdata

file A, and shows returns of companies, grouped by SBI (standard industrial

classification) and region. This table is replicated 1000 times, while applying

the ZES method. In each replication new perturbation multipliers are drawn

independently from a bimodal Normal distribution with a mean of 10 percent

of perturbation and a small standard deviation of 0.02. After the simulation,

for each cell the average of the 1000 noise-added cell values in the 1000

replications is computed by adding up over all replications and dividing by

1000. This figure then is divided by the real, unperturbed cell value and the

result of this operation is shown in Table 7.1.

As can be seen in Table 7.1, the ratios are all very close to 1, indicating

that the cell totals are equally probable to be perturbed upward as to be

perturbed downward. Also, 46 of the 92 interior cells are perturbed down-
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region 1 2 3 4
SBI2 0.9998 1.0002 0.9998 0.9993 1.0002
15 1.0001 1.0005 0.9998 1.0001 1.0000
16 0.9992 0.9997 0.9953 1.0017 0.9997
17 1.0001 1.0006 1.0003 1.0005 0.9996
18 0.9995 1.0012 0.9995 0.9992 0.9997
19 0.9997 1.0018 0.9994 0.9996 0.9997
20 0.9998 1.0008 0.9994 0.9993 1.0002
21 0.9999 1.0012 0.9997 1.0001 0.9992
22 1.0002 0.9993 1.0000 1.0001 1.0009
23 0.9984 1.0006 0.9964 0.9974 1.0061
24 0.9997 1.0006 1.0000 0.9992 1.0001
25 1.0002 1.0013 1.0005 0.9992 1.0002
26 1.0003 1.0006 1.0002 0.9999 1.0005
27 0.9982 1.0038 0.9997 0.9960 1.0005
28 0.9997 0.9994 0.9997 0.9999 0.9997
29 1.0006 0.9999 1.0001 0.9999 1.0017
30 0.9982 0.9973 0.9990 1.0011 0.9970
31 0.9994 0.9993 0.9982 1.0003 0.9996
32 0.9987 0.9976 1.0045 0.9999 0.9974
33 0.9992 0.9961 1.0007 0.9999 0.9987
34 1.0012 1.0002 1.0000 0.9994 1.0016
35 0.9999 1.0000 1.0000 0.9998 1.0001
36 1.0002 1.0008 1.0001 1.0000 1.0002
37 0.9999 0.9995 0.9997 1.0014 0.9991

Table 7.1: Average perturbed value over 1000 replications, divided by original
value. Sensitive cells are set in boldface.

ward while the other 46 interior cells were perturbed upward, which is to

be expected. The largest value observed is 1.0061, the smallest value equals

0.9960. A (3,70%)-dominance rule was used to evaluate the safety of the

cells. The ratios of sensitive cells do not differ significantly from those of

the nonsensitive cells.

We can also look at the standard deviations for the 1000 perturbed

observations. These standard deviations give an impression of how much

noise would typically be present in a cell after a single application of the

perturbation factors. The standard deviation of the perturbed cell value is

equal to the standard deviation σ of the added noise, e.

σ[TN ] = σ[e]

These are standardized by the true cell value T . Table 7.2 shows the values
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of σ[T N ]
T , which can be seen as the coefficients of variation (CV ) of the

perturbed value given the true value. This can be denoted by CV [TN |T ].

region 1 2 3 4
SBI2 0.0000 0.0076 0.0058 0.0097 0.0098
15 0.0057 0.0158 0.0097 0.0105 0.0112
16 0.0602 0.0615 0.0956 0.0706 0.0932
17 0.0115 0.0491 0.0169 0.0164 0.0201
18 0.0107 0.0269 0.0187 0.0176 0.0186
19 0.0160 0.0638 0.0382 0.0273 0.0189
20 0.0070 0.0195 0.0136 0.0127 0.0125
21 0.0119 0.0268 0.0235 0.0200 0.0228
22 0.0070 0.0160 0.0128 0.0103 0.0142
23 0.0443 0.0726 0.0798 0.0490 0.0990
24 0.0171 0.0317 0.0182 0.0265 0.0275
25 0.0077 0.0236 0.0143 0.0138 0.0135
26 0.0088 0.0237 0.0119 0.0141 0.0168
27 0.0391 0.0572 0.0337 0.0705 0.0263
28 0.0047 0.0131 0.0111 0.0086 0.0072
29 0.0086 0.0175 0.0141 0.0075 0.0211
30 0.0565 0.0957 0.1000 0.0331 0.0621
31 0.0131 0.0479 0.0251 0.0208 0.0247
32 0.0418 0.0511 0.0662 0.0444 0.0631
33 0.0151 0.0479 0.0384 0.0139 0.0318
34 0.0450 0.0248 0.0232 0.0210 0.0587
35 0.0135 0.0244 0.0255 0.0211 0.0257
36 0.0077 0.0176 0.0114 0.0162 0.0146
37 0.0143 0.0295 0.0299 0.0289 0.0239

Table 7.2: CV’s after ZES

Again, sensitive cells are set in boldface. Clearly, for sensitive cells higher

CV’s are observed. This means that in sensitive cells, the variability of the

amount of perturbation is higher than in nonsensitive cells. This implies that

sensitive cells are more likely to receive a lot of noise after a single application

of the ZES method than nonsensitive cells are. This is a desirable effect.

We can also look at the distribution of the amount of perturbation added

to the various types of cells. In every replication, the absolute percentage

of noise added to each cell value is computed. After the simulation, for

each cell the average percentage of noise added over all 1000 replications is

computed. Then, for each type of cell, the average amount of perturbation

(in percentages) is computed, and also the maximum and the minimum levels

of perturbation found per type of cell are given. The results are shown in
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Table 7.3. Evidently, sensitive cells receive more perturbation than non-

sensitive cells. Also, interior cells receive more noise than marginal cells.

This is logical, because marginal cells are at a higher level of aggregation

and are therefore likely to be less sensitive than the interior cells they are

marginal for. Nevertheless, marginal cells can also be sensitive, so on average

they will receive more perturbation than non-sensitive cells. Because the

mean percentage of noise added to individual respondents is 10 percent,

cells are not expected to be changed by more than 10 percent. Only if the

standard deviation used is large, cell values can be changed more vigorously.

The information loss in a table is measured by

|C|∑
i=1

|ei| =
|C|∑
i=1

|TN − T | (7.1)

This figure then is divided by the number of cells in the table. To make

comparison between the various methods possible, this figure can be per-

turbed by the average amount of perturbation in all nonnegative cells. This

figure is given between brackets.

percentage noise in: average max min

marginal cells (28) 1.55 5.56 0.41
interior cells (92) 2.74 9.83 0.58
sensitive cells (21) 6.43 9.83 4.18
nonsensitive cells (99) 1.62 4.60 0.41
all nonzero cells (120) 2.46 9.83 0.41

Information Loss: 1.21 · 105 (4.92 · 104)

Table 7.3: Amount of perturbation in cells, over 1000 replications of ZES. Infor-
mation loss is measured by (7.1)

The ZES method does not guarantee that the perturbed table is safe. In

fact, for this table only one cell is provided with enough perturbation to be

evaluated ’safe’ by the SN sensitivity measure.

If the sensitivity of cells is determined by the SN safety measure of Sec-

tion 4.1, rather than by the (n,k)-dominance rule, the 1000 simulations result

in Table 7.4. Note that according to Table 7.4 there are only 18 sensitive cells

found by the SN sensitivity measure. The distinction between sensitive cells
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percentage noise in: average max min

marginal cells (28) 1.55 5.56 0.41
interior cells (92) 2.74 9.83 0.58
sensitive cells (18) 6.79 9.83 4.83
nonsensitive cells (102) 1.70 4.60 0.41
all nonzero cells (120) 2.46 9.83 0.41

Information Loss: 1.21 · 105 (4.92 · 104)

Table 7.4: Amount of perturbation in cells, over 1000 replications of ZES using
the SN sensitivity measure

and nonsensitive cells is more clear: note that the most severely perturbed

nonsensitive cell receives less noise than any of the sensitive cells. Because

the average perturbation of sensitive cells increases while three sensitive cells

moved to the nonsensitive cells, these moving cells are less sensitive than the

average sensitive cell. However, they clearly are more sensitive than the av-

erage nonsensitive cell is, because the average perturbation of nonsensitive

cells increased. Inspection learns that all three cells have a sensitivity close

to 70 percent (by the dominance rule), which is just above the threshold of

70 percent. Because the SN safety measure accounts better for the internal

cell structure than the dominance rule does, and because in Table 7.4 the

distinction between nonsensitive cells and sensitive cells is more clear than

in Table 7.3, we can conclude that the ZES method accounts for the internal

cell structure.

percentage noise in: average max min

marginal cells (28) 1.41 4.88 0.37
interior cells (92) 2.47 8.21 0.55
sensitive cells (18) 5.79 8.21 4.40
nonsensitive cells (102) 1.59 4.17 0.37
all nonzero cells (120) 2.22 8.21 0.37

Information Loss: 1.12 · 105 (5.05 · 104)

Table 7.5: Amount of unimodally distributed noise in cells, over 1000 replications
of ZES

To evaluate the effects of using a bimodal distribution for generating the
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perturbation factors compared to using a unimodal distribution, the ZES

method can be applied using a uninormal distribution, with mean at 1 and

standard deviation 0.1. Note that the bimodal distribution used earlier also

has mean 1 and standard deviation roughly equal to 0.1. As can be seen from

Table 7.5, generally a smaller amount of perturbation is added. Because a

unimodal distribution was used, a significant number of multipliers is close

to 1, which is the mean of the distribution. This means that the added

noise is close to zero. If a bimodal distribution is used, the probability of a

multiplier being equal to one is very small. Most multipliers are supposed

to be close to one of the two modes of the distribution. In that case, the

multipliers offer a minimum protection level to individual respondents. The

information loss is somewhat larger than that of the standard ZES method,

but the difference is not very significant.

A similar table can be constructed for the MARG method. First, we use

the MARG method in which the marginal cell totals were provided with some

noise included. This noise was with equal probability positive or negative

directed. In case it was negative directed, marginal cell M would become

MN = M(1− pSd(M)). Otherwise, M would become M(1 + pSd(M)). The

factor Sd(M) is the sensitivity of cell M according to the dominance rule

and this factor is somewhere between 0 and 1. The factor p was chosen

to be 0.01, so a marginal cell is at most changed by 0.01*1 = 1 percent.

This noise then is spread over the interior cells, giving sensitive cells more

noise than non-sensitive cells. This is done by weighting cell total Tij by

zij = 0.85 + 0.3 ∗ Sd(Tij). This approach was described in Section 4.2.1.

Interior cells that contain more than 1000 contributors are fixed at their real

value. For the other cells, the cell perturbation factor was applied directly

to all contributors to that cell. Note that this also could have been done

using any method described in Chapter 5. This approach results in Table

7.6. Clearly, this method provides control over the amount of noise present

in marginal cells. As can be seen in Table 7.6, marginal cells receive a very

small amount of perturbation. A drawback of this is the loss of control

over the interior cells. On average, interior cells receive a slightly smaller

amount of noise than in the ZES method. However, the range of values is

larger: the largest perturbation measured is 15 percent, while for the ZES
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method this is 10 percent. Also the distinction between sensitive cells and

nonsensitive cells is less clear in Table 7.6 than in Table 7.3. In Table 7.6 the

nonsensitive cells take values between 0.00 and 12.26 percent, while sensitive

cells take values ranging from 0.53 to 15.49 percent. The conclusion is that

for the MARG method the variability of the noise added is higher, and that

the ”power” of the MARG method is lower than that of the ZES method.

This means that the MARG method cannot distinguish sensitive cells from

nonsensitive cells as good as the ZES method can.

percentage noise in: average max min

marginal cells (28) 0.20 0.88 0.00
interior cells (92) 2.06 15.49 0.00
sensitive cells (18) 3.02 15.49 0.53
nonsensitive cells (102) 1.38 12.26 0.00
all nonzero cells (120) 1.63 15.49 0.00

Information Loss: 4.95 · 104 (3.03 · 104)

Table 7.6: Amount of perturbation in cells, after MARG

When applying the MARG method after the ZES method, the marginals

are fixed at their true values. Also cells with more than 1000 contributors

are fixed at their true values. Cells are weighted by the same factor zij as

was used in the MARG method, and again the cell perturbation factor was

directly applied to all contributors to that cell. This results in Table 7.7.

percentage noise in: average max min

marginal cells (28) 0.00 0.00 0.00
interior cells (92) 2.21 9.25 0.00
sensitive cells (18) 4.84 9.25 1.29
nonsensitive cells (102) 1.14 5.71 0.00
all nonzero cells (120) 1.70 9.25 0.00

Information Loss: 4.14 · 104 (2.44 · 104)

Table 7.7: Amount of perturbation in cells, after MARG/ZES

For both MARG methods, the information loss is smaller than that of

the ZES method. This can be explained by the fact that in the MARG

methods the perturbation of the marginal cells and the cells at a high level
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of aggregation is kept very small. Therefore, the information loss of those

larger-valued cells is very small, and this implies that the total information

loss of the table is also smaller. Cells with large values usually have a higher

information loss than cells with smaller values, because information loss is

measured in terms of (perturbed) cell totals. Therefore, information loss in

a cell is dependent on the absolute size of the cell value. As marginal cells

are more important than interior cells, it is desirable that their information

loss is penalized more severely than the information loss of interior cells.

Also for both MARG methods, it is not guaranteed that all cells are safe

after perturbation. The exact values for the parameters to the methods have

to be found by trial and error to make sure they result in safe tables.

percentage noise in: average max min

marginal cells (28) 2.53 9.14 0.67
interior cells (92) 4.53 16.44 0.98
sensitive cells (18) 11.26 16.44 7.87
nonsensitive cells (102) 2.78 7.77 0.67
all nonzero cells (120) 4.06 16.44 0.67

Information Loss: 2.40 · 105 (5.91 · 104)

Table 7.8: Amount of perturbation in cells, after ZES(µ)

If the ZES method is applied using a bimodal distribution with mean

found as described in Section 5.1, the µ found is very large. This is caused

by cells that are not only sensitive according to an (3, 70) rule, but are

also sensitive according to an (2, 70) and even an (1, 70) rule. We will refer

to this type of cells as supersensitive cells. For these cells, µ converges to
1
k − 1 = 43% if k = 70%. This is by far too large. If nonsensitive cells

are perturbed by this amount of noise, noise may not cancel out very well

across contributors. Therefore, the supersensitive cells are ignored when

finding µ. These supersensitive cells can hardly be made safe by applying

SDP methods, so they shouldn’t occur in the table at all. Supersensitive

cells should be removed by redesigning the table, for instance by combining

two rows. If the supersensitive cells are ignored, and for q = 1, the largest

µ found equals µ = 16.7%. Applying this µ in the ZES method results in

Table 7.8. The information loss of this method is roughly equal to that of

the standard ZES method, which is logical. Moreover, all sensitive cells are
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safe after the perturbation process, excluding the supersensitive cells.

If the LP-problem formulation of Section 5.2 is used, the desired cell

totals are found as described in section 4.1. A maximum cell value change

of 20 % is permitted.

percentage noise in: average max min

marginal cells (28) 1.57 17.03 0.00
interior cells (92) 2.49 20.00 0.00
sensitive cells (18) 14.32 20.00 2.17
nonsensitive cells (102) 0.15 5.86 0.00
all nonzero cells (120) 2.27 20.00 0.00

Information Loss: 8.1 · 104 (3.56 · 104)

Table 7.9: Amount of perturbation in cells, after optimizing LP

When using the methods of section 4.1, the amount of perturbation in

each cell can be controlled exactly. Therefore, all nonsensitive cells receive

no perturbation at all. Only some nonsensitive marginal cells receive a

small amount of perturbation, caused by sensitive cells in the corresponding

row or column. Sensitive cells receive exactly the amount of perturbation

desired, under the condition that the perturbed cell total does not deviate

more than 20% from the original cell total. Therefore, cells that require

more than 20% of perturbation are not entirely safe after perturbation.

However, as was argued earlier in this section, these supersensitive cells

should not be published at all because they cannot be made safe by SDP

methods. As can be seen in Table 7.9, sensitive cells are generally much

more perturbed than nonsensitive cells. Due to the control provided by this

approach (nonsensitive cells are fixed at their real values), the information

loss is somewhat smaller than in the ZES method.

Similar results apply when the problem is formulated as a nonlinear pro-

gramming problem (NLP). The disadvantage of the nonlinear formulation

is that the Hessian of the objective function needs to be computed (see Ap-

pendix A.2.3). If the number of respondents is large, the Hessian may not

fit into memory anymore. For datafile A, with its 65,000 respondents, this

is the case. The nonlinear formulation can only be tested with the data of

datafile B, because the Hessian of 10,000 respondents fits into memory (it
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percentage noise in: average max min

marginal cells (19) 2.03 9.42 0.00
interior cells (72) 2.27 17.90 0.01
sensitive cells (2) 15.41 17.90 12.92
nonsensitive cells (89) 1.90 9.42 0.01
all nonzero cells (91) 2.22 17.9 0.01

Information Loss: 3.80 · 103 (1.71 · 103)

Table 7.10: Amount of perturbation in cells, after optimizing NLP

has about 1,500,000 entries). The computation of the Hessian takes more

time than the optimization in itself. The results are given in Table 7.10.

Because of the protection offered by the sample weights, there aren’t very

much sensitive cells in the table. Again a nonsensitive marginal cell re-

ceives a lot of perturbation because its columns only contains one sensitive

cell. This problem my be solved by perturbing the other (nonsensitive) cells

in the column slightly in the opposite direction. This approach should be

subject to further research. Table 7.10 is generated from datafile B, so for

evaluation purposes, the same table is perturbed by the ZES method, with

µ = 10%. This results in Table 7.11.

percentage noise in: average max min

marginal cells (19) 0.69 4.72 0.03
interior cells (72) 1.12 8.91 0.06
sensitive cells (2) 6.48 8.91 3.99
nonsensitive cells (89) 0.91 4.72 0.03
all nonzero cells (91) 1.03 8.91 0.03

Information Loss: 1.01 · 103 (9.80 · 102)

Table 7.11: Amount of perturbation in cells, after ZES on table of file B

7.2.2 The effects on a set of tables

To evaluate the effects of SDP on a set of tables, 20 tables were defined

out of the data of datafile B. For this set of tables, the mean to be applied

in the ZES method was found to be 18.8%. The results can be found in

Table 7.12. The perturbed cells show similar behaviour as in Table 7.8,
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which represents the single table case. Because 20 tables were involved, the

extremes are more extreme.

percentage noise in: average max min

marginal cells (345) 1.73 8.92 0.04
interior cells (1260) 2.76 18.85 0.00
sensitive cells (155) 6.80 18.85 0.64
nonsensitive cells (1450) 2.08 11.74 0.00
all nonzero cells (1605) 2.54 18.85 0.00

Information Loss: 3.11 · 105 (1.22 · 105)

Table 7.12: Amount of perturbation in cells of 20 tables, after ZES method with
µ = 18.8%

The optimization methods can also be applied to a set of tables. The

nonlinear programming approach was used to find multipliers for three tables

generated from datafile B. This results in table 7.13. If the optimization

approach is applied to several tables at once, a respondent may be in a

inflated cell in one table, and in a deflated cell in another table. If this

happens on a large scale, which is likely if many tables are in the predefined

set, the perturbed cell totals may not fit very well to the desired cell totals.

Moreover, nonsensitive marginal cells may end up severely perturbed, as was

mentioned before. In Table 7.13, marginals cells are even more perturbed

than interior cells, on average. These issues need further research. A solution

may be to use methods similar to the IPF method, for instance the top-down

approach.

percentage noise in: average max min

marginal cells (63) 6.22 17.65 0.10
interior cells (288) 5.64 19.31 0.00
sensitive cells (7) 17.42 19.31 12.92
nonsensitive cells (344) 5.46 17.65 0.00
all nonzero cells (351) 5.75 19.31 0.00

Information Loss: 2.86 · 105 (4.97 · 104)

Table 7.13: Amount of perturbation in cells of 3 tables, after NLP method
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Chapter 8

Conclusions and further

research

8.1 Conclusions

In this report, a family of Statistical Disclosure Control methods named

Source Data Perturbation (SDP) is evaluated. In SDP, each respondent in

the microdata file is assigned a weight factor. When tables are generated

from the microdata, each quantitative attribute is weighted multiplicatively

by the weight factor assigned to the corresponding respondent. Several

methods can be used to find appropriate multiplicative weight factors. How-

ever, these methods share the following properties:

• Sensitive cells are perturbed significantly

• Nonsensitive cells are not changed significantly, or not changed at all

• Tables generated from the microdata are consistent

• No bias is introduced in the tables

• The original microdata is not changed

The major advantages of SDP methods are that tables generated from

a base microdata file are consistent. Moreover, the original microdata is

not changed. Furthermore, because the perturbation is done in a controlled

fashion, the table data are still useful for processing by data users. These
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data users are not able to deduce information concerning individual respon-

dents. If sample weights are provided with the data, these already provide

some protection the respondents. This extra protection is accounted for

when applying perturbation factors to the data attributes.

One of the disadvantages of SDP is that trends and ratios are not pro-

tected. This problem can be solved by considering each respondent’s mul-

tiplicative weight factor to be a base multiplier. Then to each attribute a

multiplier slightly different from the base multiplier is applied. This way,

trends and ratios are somewhat protected. However, this approach may cre-

ate inconsistencies in hierarchical tables, because partial totals may not add

up to the respondent total anymore. This should be accounted for when as-

signing multipliers deviating from the base multiplier. It was shown that this

can be done by looking at the dependencies introduced by the hierarchical

definitions.

Another disadvantage is that very sensitive cells cannot be handled ad-

equately by SDP methods. For these sensitive cells, too much perturbation

has to be added to the respondents. Therefore, these very sensitive cells

should be removed from the tables before SDP is applied. This can be done

by redesigning the table, for instance. SDP methods can also be combined

with other disclosure control methods, especially with other data masking

methods such as recoding methods. SDP methods should not be combined

with data hiding methods such as suppression methods. Rather, they are

supposed to form an alternative for these methods.

To measure the safety of perturbed tables, a sensitivity measure for per-

turbed cells was deduced. This sensitivity measure is based on the safety

requirement on individual respondents, which can be deduced from stan-

dard sensitivity measures such as the (n, k)-dominance rule. The safety re-

quirement on individual respondents demands that the contributions of any

individual respondent cannot be estimated to within too narrow margins. It

is shown that if a (n, k)-dominance rule is satisfied, then a limit is imposed

to the accuracy within which a contribution of an individual respondent can

be estimated. This limit is equal to 1
k − 1 percent of the contribution that

is estimated.
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SDP methods first look at the table level to see how much the tables

in a predefined set of tables should be perturbed. Given the perturbation

levels found in the first stage, in the second stage this is translated into

perturbation factors that are assigned to the respondents at the microdata

level. Besides the tables in the predefined set also other tables can be pub-

lished from the microdata. For these tables, the first stage is skipped, and

therefore they are not guaranteed to be safe after the perturbation process.

Several SDP methods are evaluated in this report, each of which has its

own strengths and weaknesses. These are compared in Table 8.1.

method speed control safety information loss

ZES very fast sufficient not guaranteed larger

ZES(µ) very fast sufficient guaranteed larger

MARG fast over marginals not guaranteed smaller

OPT slower over interior guaranteed smaller

Table 8.1: Properties of SDP methods

How each of these methods was applied is discussed in Section 7.2. The

ZES and the ZES(µ) method can be applied very quickly, as it takes only

a fraction of a second to draw the multipliers. The MARG methods take

somewhat more time than the ZES methods, but this is only a matter of

seconds. The optimization methods take more time, as the LP formulation

needs about one minute to be solved, while the NLP formulation needs 15

to 30 minutes. Naturally these figures depend on the number of respondents

and tables to which the perturbation processes are applied, as well as on the

implementation and hardware used. The ZES methods also provide control

over the effects of the perturbation process: sensitive cells receive receive

more noise than nonsensitive cells, and marginal cells are perturbed less

severely than interior cells. The MARG methods are designed specifically

to control the marginal cells, which they do satisfactory. As a result of

this, the control over the interior cells decreases. The average perturbation

of sensitive cells compared to the average perturbation of nonsensitive cells

is good, but the perturbation of some cells differs significantly from the

average values. The optimization methods provide control over the interior

cells, but marginal cells may end up severely perturbed. This is caused by
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sensitive interior cells that are alone in their row or column and are therefore

not countereffected by other, opposite directed sensitive cells. This can be

prevented by slightly perturbing the nonsensitive cells in the appropriate

row or column, to provide opposite directed noise. Another problem of the

optimization methods is that the perturbed cell totals may not fit to the

desired cell totals anymore if a large set of tables is used.

The ZES(µ) method and the optimization methods guarantee safety, for

all cells excluding the ones that are too sensitive. Because of the fitting

problems of the optimization methods, not all sensitive cells are guaranteed

to be safe if one of the optimization methods is applied to a set of tables.

However, for the ZES(µ) method this is guaranteed.

Finally, the information loss of the MARG methods and the optimization

methods is somewhat smaller than that of the ZES methods, because these

methods provide more control by fixing important nonsensitive cells at their

true values.

The general properties of SDP methods can be evaluated using a more

general framework, which makes it easier to compare SDP methods to other

Statistical Disclosure Control methods.

8.2 Evaluation of SDP methods

The properties of SDP methods can be evaluated using the evaluation crite-

ria applied in [9]. Using these criteria, it is easier to compare SDP methods

to other SDC methods. Also it is a good review to get an impression of the

possibilities and limitations of SDP methods. Each evaluation criterion is

presented, explained, and evaluated.

1. Security: partial or exact disclosure of individual respondents is not pos-

sible.

If SDP is applied, a true contribution Xi cannot be disclosed, so exact

disclosure is not possible. However, in some situations a intruder may be

able to find miXi, or some ratio Xi
Yi

(see Section 6.2). In these situations

partial disclosure is possible.

2. Robustness: additional knowledge of the external user, apart from the

published information, does not induce disclosure.
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If a table is published twice, once using a SDP approach and once using

another disclosure control method such as cell suppression, partial dis-

closure may be possible. This is the case if information from both tables

can be combined to obtain more information concerning individual re-

spondents. Therefore creating inconsistencies across tables should not be

allowed.

3. Flexibility: the method can handle frequency count tables as well as tables

of magnitude data; several confidential attributes can be handled simul-

taneously; both qualitative and quantitative attributes can be protected.

SDP methods can handle quantitative data as well as frequency counts

of qualitative data. However, perturbed tables of frequency count data

may need to be rounded. SDP methods cannot handle qualitative data,

but that is not required when protecting table data. As the multiplier

assigned to a respondent is applied to all (quantitative) attributes of that

respondent, several confidential attributes are handled simultaneously.

4. Richness of information: information loss due to the disclosure measure

should be as small as possible. The method used should not create in-

consistencies across tables derived from the same dataset. The published

data still has to be useful for further processing by the external user.

The amount of information loss depends on the desired level of protection

offered to individual respondents. As the perturbation of nonsensitive

cells is kept small, these cells are still useful for further processing. Sensi-

tive cells receive more perturbation than nonsensitive cells, and therefore

these are less useful for further processing by data users. However, data

users are not supposed to process sensitive cells in a useful way, because

this induces disclosure and data users are not supposed to be able to

deduce information about individual respondents.

5. Costs: the costs of the implementation of the method are low. Data users

quickly understand the method, so they know how to process the released

data correctly. The costs of daily processing of statistics are low.

The basic principles of SDP methods are fairly easy to understand. The

implementation of the ZES method is very simple. Implementation of

the ZES(µ) method requires some additional functionality but is also very
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simple. Implementing the MARG and optimization methods is somewhat

more difficult, especially the optimization methods. These need help from

optimizers such as MOSEK. The costs of creating perturbed tables are

very low when using the ZES method. Drawing multipliers from some

distribution can be done very efficiently and should take no longer than

one second for a large microdata file. Applying MARG to tables should

not take very long either, especially if little perturbation is imposed and

not many cells are fixed at their true values. Optimization methods

take more time, ranging from one minute when linear programming is

used to 20 minutes when nonlinear programming is used. When using

nonlinear programming methods the number of respondents is a limiting

factor. If this number is large, the Hessian matrix may not fit in computer

memory. Evidently, methods that provide more control the amounts of

perturbation add take more time.

8.3 Further research

Further research in the field of SDP methods should focus on the weaknesses

of the methods. Is it desirable to protect trends and ratios, and in case it

is, how much additive noise should be provided to make them safe? When

accounting for the protection already offered by the sample weights, should

only large contributions with small sample weights be perturbed, or should

every respondent be protected by a multiplicative weight factor? The check-

ing mechanism that was sketched in Section 6.2 needs to be implemented.

Also, the application of MARG to several tables simultaneously and the

optimization problem formulation that minimizes information loss should

be implemented. Moreover, the SDP methods proposed in this report can

be refined and fine-tuned to provide more control over the effects of the

perturbation. This is especially the case for the MARG methods and the

optimization methods. The distribution of
∑∞

i=1 riXi discussed in Section

5.1 should be investigated, accounting for the fact that the ri’s may imply

a inflation or a deflation. When perturbing several tables, a top-down IPF

approach may improve consistency over all tables. SDP methods should

be included in existing SDC software such as ARGUS. This also makes it

possible to combine SDP methods with existing SDC methods.
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Appendix A

A.1 The standard IPF method

In this section, the standard IPF method is described, for the case of 2-

dimensional tables.

Suppose we have a g x h matrix A, with row totals ui, i = 1 . . . g and column

totals vj , j = 1 . . . h. Suppose the vector of desired row totals u and the

vector of desired column totals v are given, and therefore, each element of

A has to be changed to force the actual totals to equal the desired totals.

We would like to find the matrix A that corresponds to u and v (A can be

seen as some perturbation of the matrix A). This involves two steps:

1. multiply each row of A by a scalar that will make the row sum equal the

row constraint. This gives matrix A1.

2. multiply each column of matrix A1 by a scalar that will make the column

total equal its constraint. This gives matrix A2.

This process is repeated until convergence is reached. So, in general,

A2t+1 = rt+1A2t,

A2t+2 = A2t+1st+1 = rt+1A2tst+1

where

rt+1
i =

ui

h∑
j=1

a2t
ij
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and

st+1
j =

vj
g∑

i=1
a2t+1

ij

A.2 The SoDaP program

In this section, the functional design of a SDP Application is discussed. The

functional design describes which steps have to be taken to generate a set

of safe tables from a microdata file. Also the implementation of the testing

program SoDaP is discussed. Finally, the role of the MOSEK optimizer is

looked into.

A.2.1 Functional design

The functional design of the testing program SoDaP is shown in Figure A.1

on page 79. When using the testing program, first the metadata file has to be

specified. The metadata is read, and the user can input information about

which variables should be used for specifying tables, and which variables

should be treated as response variables. Then, using this information, the

microdata file is read and response variables are stored as floating points,

while the other variables are seen as categorical variables and are stored as

integers. It is assumed that the data fits into memory. If this is not the

case, the program terminates, and less variables and/or less records should

be read from the microdata. After the data is read into memory, tables

can be specified, and each specified table will be added to the set of tables.

When done specifying tables, the method of adding noise can be specified.

These methods are the methods proposed in chapter 3.

The perturbation strategies do not guarantee safe tables, so this has to

be checked. If there is no disclosure risk, the set of tables is declared safe

and is released. Also the assigned weight factors are saved and a disclosure

report is written. However, if the checking mechanism indicates a negative

outcome, there are several possibilities:

1. Some ”conventional” (table level) safety measures are applied, such as

global recoding. This can be done interactively, as the program can

indicate in which cells in which tables the problems arise.

78



disclosure report safe tables multipliers

?? ?

generate safe tables

?

-

�

output problemscheck safety

?

?

?

?

?

?

?

?

?

?

?

?

ZES ZES(µ) IPF LP NLP
conven-
tional

methods

?

specify method

?

generate tables safety measure

?

�

specify tables

?

?

metadata microdata

Figure A.1: Functional design of SoDaP
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2. Another perturbation strategy can be applied.

3. The set of predefined tables can be adjusted, given the problem indication

by the checking mechanism

The checking mechanism is sketched in Section 6.2.

A.2.2 Data structures

The testing program SoDaP was implemented using the C++ programming

language. The data structures used in the implementation are chosen in

a very straightforward way. Respondents are modeled by the class Re-

spondent. A Respondent object contains all information found in the

corresponding record of the microdata file, the perturbation multiplier, and

interface functions for accessing the information of a Respondent. Typi-

cally, these are used for returning perturbed or real values on some variable

such as measure of size, profit, etc.

The Table object models tables that are generated from the microdata.

Tables are constructed of Cells, which contain the aggregate value on some

response variable for some combination of the table spanning variables. Each

Cell knows which Respondents contribute to it, and the advantage of this

construction is that after assigning noise factors the tables do not have to

be build all over again. This saves a lot of time, especially when the micro-

data file is large and many tables are generated from it. Also, Cells provide

interface functions to access Cell attributes, such as original value, per-

turbed value, desired value, sensitivity and number of contributors. Cells

also contain member functions to evaluate their sensitivity, compute desired

cell totals, and to compute the amount of perturbation after applying mul-

tiplicative noise.

Tables contain information concerning Table spanning variables, num-

ber of rows and columns, and parameters of the safety measures used. These

parameters are not the same for each table, as the properties of each specific

table imply their own disclosure risks. Table interface functions provide ac-

cess to Table member data and to the interface and member functions of

individual Cells, given row and columns indices.

The entire problem is modeled by the Problem instance class, which

contains a list of Respondents, which is actually the microdata, and con-
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tains a list of Tables, which are the tables generated from the microdata

that are to be published. The Problem instance object provides the per-

turbation methods of chapter 3, and provides interface functions to let the

user specify the datafiles and the tables that are to be generated. Also it

contains functions for showing tables on the screen and to save them to file.

Each cell has a list of pointers to respondents contributing to them. Each

respondent contributes once to each table, but several cells in one table may

have a connection to the same respondent. This is because if a respondent

contributes to a cell in some table, it also contributes to the marginal cells

of that table. Hence a respondent can be referenced several times from the

same table. Also a respondent may be connected to several tables, as he

may contribute to more than one table.

A.2.3 The MOSEK optimizer

To solve the optimization problems of Section 5.2 the software package

MOSEK is used (see the MOSEK user’s manual [2] or www.MOSEK.com).

MOSEK solves linear, quadratic, and quadratically convex constrained op-

timization problems. To this end, MOSEK provides an interior point opti-

mizer and a primal simplex optimizer. Also, MOSEK is designed to handle

sparse and large-scaled problems, which is very appropriate for the prob-

lems of interest in this report. The interior point method implemented in

MOSEK is the homogeneous and self-dual algorithm. For details on the

implementation see [1]. Interior points methods are especially appropriate

for problems with a large number of variables and constraints, and for this

kind of problems they appear to be superior to the simplex method. Most

interior point methods have polynomial complexity. Moreover, they can also

solve nonlinear programming problems, while the simplex method can only

solve LP problems.

The problem can be provided to MOSEK through an input file, or

through the MOSEK Application Program Interface, the API. This API

can be called directly from C++. In any case, the input parameters have

to be inputted according to a model of the form

1
2

m∑
i=1

n∑
j=1

q0
ijxixj + cjxj + cf
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subject to the functional constraints

lck ≤
1
2

n∑
i=1

n∑
j=1

qk
ijxixj + akjxj ≤ uc

k k = 0, . . . ,m

and the bounds

lxj ≤ xj ≤ ux
j j = 0, . . . , n

Also, instead of inputting the predefined quadratic terms qijxixj , it is

possible to input some nonlinear, convex function directly into the API. In

this case, the API also needs information concerning the gradient and the

Hessian of the inputted function. When using the `2-problem formulation

of Section 5.2, the nonlinear function f(w) is

f(w) =
|C|∑
i=1

bi −
|R|∑
j=1

mjXij

2

=
|C|∑
i=1

(ei)
2

using residual ei for shorthand notation. The gradient ∇f(w) is a |R| x 1

vector:

∇f(w) =



−2
|C|∑
i=1

eiXi1

−2
|C|∑
i=1

eiXi2

...

−2
|C|∑
i=1

eiXi|R|


Finally, the Hessian is a |R| x |R| matrix that does not depend on w, so it

only needs to be computed once:

∇2f(w) =


2
|C|∑
i=1

Xi1Xi1 · · · 2
|C|∑
i=1

Xi1Xi|R|

...
. . .

...

2
|C|∑
i=1

Xi|R|Xi1 · · · 2
|C|∑
i=1

Xi|R|Xi|R|


As the number of respondents in the problem may be in the order of several

thousands, n x n may get very large. For reasons of efficiency, MOSEK

only stores the lower triangular part of the Hessian, as it assumes it is

symmetrical, and furthermore MOSEK only stores the nonzero elements.
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Entry k,l of the Hessian represents the cells in which respondent k and

respondent l appear together, which means that if respondent k never occurs

in a cell where respondent l also occurs, then entry k,l is zero, and doesn’t

have to be stored.
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