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1. Statistical Disclosure Control 

1.1 General description 

When publishing statistical information, Statistics Netherlands must achieve a 
balance between the interests of its data suppliers and the interests of its users. On 
the one hand, the Statistics Netherlands users want as much information as possible, 
and as detailed as possible. On the other, the data suppliers (people and companies, 
as well as the registration holders and the Dutch Data Protection Authority) require 
that their privacy is guaranteed. Private lives and public policies: confidentiality and 
accessibility of government statistics (Duncan et al., 1993) is the very relevant title 
of an American book about this problem. 

What Statistics Netherlands may and may not publish follows from its statistical 
disclosure control policy, as set down in the Statistical Disclosure Control Handbook 
(Hundepool et al., 2006). Here, statistical disclosure control means preventing that 
content-related conclusions about recognisable units are made based on published or 
otherwise available Statistics Netherlands data. 

It must not be possible to make such conclusions based on the statistical publications 
from Statistics Netherlands (StatLine tables, web articles, press releases, scientific 
articles). However, also if Statistics Netherlands makes microdata available for 
scientific analysis, this basic rule of statistics must remain in force.  

The Statistical Disclosure Control Handbook describes the policy and other rules 
that individual publications must comply with. However, not all publications satisfy 
these rules in and of themselves. On the contrary, frequently a publication will have 
to be “protected”. Different methods are available to protect microdata, table data 
and analysis results. The theme of Statistical Disclosure Control in the Methods 
Series can thus be broken down into a number of subthemes: 

• Statistical disclosure control methods for microdata, 
• Statistical disclosure control methods for quantitative tables, 
• Statistical disclosure control methods for frequency tables, 
• Statistical disclosure control methods for analysis results. 

 
The conflicting interests of privacy protection and information retention play an 
ongoing role in statistical disclosure control. When using the different methods for 
statistical disclosure control, these two aspects must be taken into account. The 
statistical disclosure control policy of Statistics Netherlands sets down a minimum 
level of protection. The real skill of the person protecting the data is to use different 
disclosure control methods in such a way that the minimum required level of 
protection is achieved and that the information loss is as small as possible. This will 
be different in every situation, as the concept of “information loss” can have 
different meanings for the different users of the Statistics Netherlands data. 
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The methods mentioned in this theme will each be explained separately. However, 
in practice, for each situation, multiple methods will often be used at the same time 
to create “safe” publications. The interaction between the different methods when 
used simultaneously will not be described in this Methods Series. 

1.2 Scope and relationship with other themes 

The statistical disclosure control policy will not be described here. That policy is 
laid down in the Statistical Disclosure Control Handbook referred to above. 
However, various available methods will be described that can be used to apply that 
policy to Statistics Netherlands publications. Some of the methods described are 
actively used at Statistics Netherlands, while other methods are, at present, only used 
at statistical bureaus abroad.  

When applying statistical disclosure control methods, both the level of protection 
and the information loss of the publications must be examined. Since the concept of 
“information” is subjective and therefore can be defined differently by each user 
(even in a single publication), it is not possible to prescribe a specific method for 
each specific situation. The methods will therefore be described along with their 
advantages and disadvantages, along with their effects on the level of protection and 
information loss. A Statistics Netherland staff member who is in charge of the 
statistical disclosure control of a publication (in whatever form), will subsequently 
have to choose the most suitable method for the publication in question. 

1.3 Place in the statistical process 

Statistical disclosure control traditionally takes place at the end of the statistical 
process: statistical disclosure control is applied immediately before publication (in 
whatever form). Ideally, account should be taken during the entire statistical process 
of the fact that, ultimately, the publication will have to satisfy the statistical 
disclosure control policy. However, measures can also be taken at the start of the 
statistical process, such as formulating the cover letter for participation in a survey 
(“informed consent”).  

The concept of statistical disclosure control therefore plays a role during the entire 
statistical process. However, the specific methods as described in this document are 
only used at the end of the statistical process, immediately before publication. 

 

1.4 Definitions 

Term Definition 
μ-ARGUS Software for the statistical disclosure control of microdata files 
τ-ARGUS  Software for the statistical disclosure control of tables 
Disclosure The obtaining of information from statistical data about a 

recognisable specific person, household, company or institution 
Identifying variable Variable of which the value can contribute to the identification of 

a specific person, household, company or institution 
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Primary risky cell Cell in a table that does not satisfy the disclosure control rules  
Secondary risky cell Cell in a table that does satisfy the disclosure control rules, but 

which must be suppressed to protect the primary risky cells  
Structural zero cell A cell for which it is generally known that, logically, this cell 

cannot have a contribution 
 

An extensive glossary for statistical disclosure control can be found at:  
http://neon.vb.cbs.nl/casc/Glossary.htm. 
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2. Statistical Disclosure Control of Microdata 

2.1 General description and reading guide 

2.1.1 General description 

The statistical disclosure control of microdata refers to the creation of microdata that 
complies with the disclosure control policy of Statistics Netherlands and which may 
be released as such by Statistics Netherlands. This therefore expressly does not 
include microdata files that remain at Statistics Netherlands, including files for 
onsite and remote access. The disclosure control policy for microdata is set down in 
chapter 3 of the Statistical Disclosure Control Handbook (Hundepool et al., 2006).  

The methods described in this subtheme are used to create protected microdata files. 
The extent to which the methods are used (or how strictly they are applied) depends 
partly on the type of file that is going to be released. This is described in detail in the 
Statistical Disclosure Control Handbook, where a distinction is made between Public 
Use Files and Microdata Files under Contract. 

The methods described in this subtheme are easy to apply with the μ-ARGUS 
software package. This package was developed by DMV in a European context.  

2.1.2 Reading guide 

As the first step in the statistical disclosure control of microdata, it will have to be 
determined whether disclosure is possible: is there any information about individual 
respondents in the microdata that may not be disclosed? This “sensitive” information 
usually concerns respondents that can be recognised as unique or rare cases in the 
microdata. Such respondents must be protected. 

Several of the disclosure control methods that we will discuss here can be applied to 
categorical variables: global recoding (section 2.3) and PRAM (section 2.7). Top 
(and bottom) coding is mainly intended for continuous variables; see section 2.5. 
Local suppression (section 2.4) can be used for both categorical and continuous 
variables. There is also the possibility of adding noise to raising weights; see section 
2.6. 

Which method or combination of methods will ultimately be used in a specific 
situation cannot be determined in advance. The department responsible for the 
construction of the microdata file is also responsible for adequate 
statisticalprotection. When selecting the method or methods to be used, two 
competing aspects must be taken into account: 

• disclosure risk 

• information loss. 
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In general, it can be said that reducing the disclosure risk will lead to increased 
information loss. The converse is also true: the smaller the information loss, the 
larger the disclosure risk. In certain cases, an assessment will have to be made, in 
which, at a minimum, the rules in the Statistical Disclosure Control Handbook 
(Hundepool et al., 2006) will always have to be satisfied. 

2.2 Scope and relationship with other themes and subthemes 

The methods that will be described in this subtheme are applied directly on the 
microdata itself. As a result, different levels of protection can arise, which 
correspond to those of the Public Use Files or the Microdata Files under Contract. 

Users of unprotected files (including files for onsite and remote access) and 
Microdata Files under Contract can generate output that does not necessarily satisfy 
the disclosure control policy of Statistics Netherlands. In these situations, other 
methods will have to be used to protect the output. For such methods, see the 
subtheme “Statistical Disclosure Control of Analysis Results”. 

2.3 Global recoding 

2.3.1 Short description 

In the statistical disclosure control of microdata files that are released by Statistics 
Netherlands, we mainly examine the variables that can potentially be used to 
identify a respondent. These types of variables are called identifying variables. 
Identifying variables are generally categorical variables. Combinations of categories 
of identifying variables tend to lead to unique or rare people. Consider, for example, 
“Mayor in Amsterdam” (unique) or “Female neurosurgeon older than 55 years of 
age from Staphorst” (rare). The rules for Microdata Files under Contract (see chapter 
3 from the Statistical Disclosure Control Handbook (Hundepool et al., 2006)) state 
that such combinations must occur sufficiently often in the target population. 

By combining categories of identifying variables, rare combinations can be made 
less rare.  

2.3.2 Applicability 

In the disclosure control of microdata files that are released by Statistics 
Netherlands, certain combinations of identifying variables must occur sufficiently 
often in the population. In particular, if an identifying variable is present in a very 
detailed form in the file, global recoding can in many cases be used to sufficiently 
protect the file, while the information loss remains limited. 

For some researchers, however, global recoding will remove too much detail, as a 
result of which they will no longer be able to perform their analyses. It is therefore 
the task of the Statistics Netherlands staff member who is charged with the statistical 
disclosure control of the file to assess whether global recoding is a suitable 
protection method for the case in question. 
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However global recoding does not have to be limited to identifying variables. Non-
identifying variables can also be globally recoded, as long as they are categorical 
variables. In such an application, with respect to the possible identification of a 
respondent, only less detailed (and therefore probably generally known) information 
would be disclosed. 

2.3.3 Detailed description 

Global recoding involves the adaptation of the code list of an identifying variable. If 
the variable is hierarchical (for example, region), an obvious aspect of the recoding 
is to delete some detail levels. For example, in a recoding of the City/Town variable, 
all cities could be replaced by the associated province.  

After the code list of a variable is adapted, for each record, the score on that variable 
is adapted to the new code list. This is therefore done not only for the risky records, 
but also for the safe records. 

2.3.4 Example 

Figure 1 shows several records from a fictitious microdata file. The records are 
numbered for easy reference. 

 Occupation City/Town Gender Education … 
1 Mayor Amsterdam Man High … 
2 Fisherman Urk Man Low … 
3 Teacher Amsterdam Woman  High … 
4 Plumber Papendrecht Man Medium  
 … … … … … 

Figure 1: Several records from a fictitious microdata file 

The mayor from Amsterdam is, obviously, unique. The variable “City/Town” is now 
globally recoded by replacing the city names by the associated province. This 
generates the records as shown in Figure 2. 

 Occupation City/Town Gender Education … 
1 Mayor Noord-Holland Man High … 
2 Fisherman Flevoland Man Low … 
3 Teacher Noord-Holland Woman High … 
4 Plumber Zuid-Holland Man Medium  
 … … … … … 

Figure 2: Records from Figure 1 after global recoding of “City” 

Now, in record 1, the mayor is no longer unique. Because the recoding is applied 
globally, the city/town variable in the safe records 2 to 4 is also adapted. 
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2.4 Local suppression 

2.4.1 Short description 

In the statistical disclosure control of microdata files that are released by Statistics 
Netherlands, we mainly examine the variables that can potentially be used to 
identify a respondent. These types of variables are called identifying variables. 
Identifying variables are generally categorical variables. Combinations of categories 
of identifying variables tend to lead to unique or rare people. Consider, for example, 
“Mayor in Amsterdam” (unique) or “Female neurosurgeon older than 55 years of 
age from Staphorst” (rare). The rules for Microdata Files under Contract (see chapter 
3 from the Statistical Disclosure Control Handbook (Hundepool et al., 2006)) state 
that such combinations must occur sufficiently often in the population. 

In local suppression, the score on at least one of the variables in a combination that 
occurs insufficiently often in the target population is suppressed (or it is assigned the 
score of “Unknown”). As a result, the combination of the remaining variables 
describes a potentially larger group in the target population. 

2.4.2 Applicability 

In the disclosure control of microdata files that are released by Statistics 
Netherlands, certain combinations of identifying variables must occur sufficiently 
often in the target population. In particular, if an identifying variable occurs in a 
very detailed state in the file, oftentimes local suppression can be used to sufficiently 
protect the file, while the information loss remains limited. 

Local suppression is often used as the final disclosure control method. At this point, 
most of the protection has already been provided by other methods, and local 
suppression is used to protect the last risky records. 

Local suppression leads to missing values in the file. The way in which these 
missing values are selected, however, is certainly not random: the goal is to protect 
records that belong to small, identifiable groups. The effect of these missing values 
on the analyses to be conducted is different from the effect of missing values as a 
result of non-response. 

For that matter, local suppression does not have to be limited to identifying 
variables. Non-identifying variables can also be locally suppressed. In the event that 
a respondent is identified, this ensures that no sensitive information would be 
disclosed. 

2.4.3 Detailed description 

In local suppression, the value of an identifying or other variable is set to 
“Unknown”. According to the disclosure control rules from the Statistical Disclosure 
Control Handbook (Hundepool et al., 2006), combinations of identifying variables 
must occur sufficiently often in the target population. By suppressing the score for at 
least one variable from such a combination, a lower dimensional combination is, in 
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fact, created. The result of this is that the combination will potentially describe a 
larger group of respondents in the target population.  

Local suppression is only applied to risky records. It is possible that multiple risky 
combinations of identifying variables occur in a single record. By suppressing the 
right variable or variables in an intelligent manner, multiple risky combinations can 
sometimes be protected simultaneously. 

If a microdata file has multiple records of people from the same household, this must 
be taken into account in local suppression. Such records may contain so-called 
household variables. These are variables for which each member of the household 
has the same score, for example, household income, household size and city/town. If 
a risky combination with a household variable occurs for at least one person from a 
household and this household variable is locally suppressed, then this variable must 
be suppressed for all the people in that household. In that case, values may therefore 
also be suppressed in safe records. 

When selecting the variable that is going to be suppressed from a rare combination 
of scores on identifying variables, this choice is, in principle, free. However, two 
options are possible in μ-ARGUS. 

First, the user can indicate, by assigning weights to variables, the extent to which the 
suppression of the score on that variable is desired (or not). μ-ARGUS then chooses 
to suppress those variables for which the sum of the weights is as small as possible. 
Consequently, it is possible, for example, to refrain (to a certain extent) from locally 
suppressing those variables that have already been adapted through other protection 
methods. 

In the second option, μ-ARGUS uses a type of entropy argument to select the variable 
or variables to be suppressed. Each variable is then assigned the following weight: 

 ∑
=

−=
XK

i

XX
X n

if
n

ifw
1

)(log)(
, (2.4.1) 

where KX is the number of categories of variable X, n the number of records in the 
microdata file and fX(i) the number of records with score i on variable X. As a result, 
variables with larger numbers of categories are suppressed less frequently than 
variables with only a few categories.  

2.4.4 Example 

Figure 3 shows some records from a fictitious microdata file. The records are 
numbered for easy reference. 

 Occupation City/Town Gender Education … 
1 Mayor Amsterdam Man High … 
2 Fisherman Urk Man Low … 
3 Teacher Amsterdam Woman High … 
4 Plumber Papendrecht Man Medium  
 … … … … … 

Figure 3: Some records from a fictitious microdata file 
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The mayor from Amsterdam is, obviously, unique. The variable “City/Town” is now 
locally suppressed by replacing the city names by the score “Unknown” in the risky 
records. This generates the records as shown in Figure 4. 

 Occupation City/Town Gender Education … 
1 Mayor Unknown Man High … 
2 Fisherman Urk Man Low … 
3 Teacher Amsterdam Woman High … 
4 Plumber Papendrecht Man Medium  
 … … … … … 

Figure 4: Records from Figure 3 after local suppression of City 

Now, in record 1, the mayor is no longer unique. Since the suppression is applied 
locally, the city/town variable in the safe records 2 to 4 is not suppressed. 

 

2.5 Top-coding 

2.5.1 Short description 

When protecting microdata, most attention is paid to the treatment of the identifying 
variables. They play an important role in the disclosure control. The numerical 
variables are often the variables that are of interest to the data user (and also a 
possible discloser), such as income, etc. The actual income of an average Dutch 
person does not identify this person to a significant extent, but that is not the case for 
people with an extremely high income. Suddenly, the variable of income has 
become an identifying variable, and therefore the need for extra protection must be 
assessed.  

Top-coding is a suitable method in this situation. It is a simple method, in which 
values above a certain threshold are replaced by the same standard value. This can 
be an indication such as (‘many’) or (‘> threshold’). However, the mean of all 
records with a value above that threshold can also be used. The advantage of this last 
choice is that the mean for the top-coded variable remains the same for all records. 

In addition, bottom-coding can be used in an equivalent manner. 

It is clear that top-coding is only useful for numerical variables. For qualitative 
variables, global recoding (see section 2.3) can be used to obtain a sort of top-
coding. 

2.5.2 Applicability 

This method can be used as additional protection in those situations where some 
extremes of numerical variables must be considered as identifying. 
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2.5.3 Detailed description 

An implementation of this method is available in μ-ARGUS. Using the menu option 
Modify|ModifyNumericalVariables, the user can easily indicate in a dialogue box 
(see Figure 5) the variable on which top or bottom-coding should be applied and 
which replacement value should be included in the file.  

 

Figure 5: Dialogue box from μ-ARGUS for top/bottom-coding 

Once the information has been entered, μ-ARGUS will only save the specification in 
this phase. Only when a protected file will actually be saved the top or bottom-
coding is actually performed. 

2.6 Adding noise to weights 

2.6.1 Short description 

If the file contains raising weights (to correct for the sample and/or non-response), 
the data protector must consider whether, using the information about the sample 
design, certain information could be retrieved from those raising weights that could 
lead to disclosure. A well-known example is that the region is often used as a 
stratification variable. If, in the protection with global recoding (see section 2.3), the 
region information is limited or possibly completely removed, a consideration 
should be made as to whether information can still be derived about the region from 
the value of the raising variable. If, for example, the city is replaced by the province, 
it is still possible that the raising weight could reveal that it concerns a large city. 
And therefore it is clear which (suppressed) city information this relates to.  
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This type of disclosure can be avoided by adding sufficient noise to the raising 
weight. By adding random noise, the raising weight will generally still be useful in 
analyses. 

2.6.2 Applicability 

In such cases as indicated above, knowledge about the sample design could divulge 
information which could contribute to the disclosure of data. This method can help 
to prevent information about individual respondents from being disclosed from 
raising weights. 

2.6.3 Detailed description 

An implementation of this method is available in μ-ARGUS. Using the menu option 
Modify|ModifyNumericalVariables, the user can easily indicate in a dialogue box 
(see Figure 6) how much noise should be added to the raising weight.  

 

Figure 6: Dialogue box from μ-ARGUS for adding noise to weights 

A percentage p can be indicated, so that μ-ARGUS will replace the weight wi by a 
random value from the interval 

 
( ) ( )

⎥⎦
⎤

⎢⎣
⎡ +−

ii wpwp
100

100,
100

100
. (2.6.1) 

Once the information has been entered, μ-ARGUS will only save the specification in 
this phase. Only when a protected file will actually be saved the noise will be added 
to the raising variable. 
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2.7 PRAM 

2.7.1 Short description 

The Post Randomisation Method (PRAM) is a method for the statistical disclosure 
control of categorical variables. PRAM can be considered as an intentional 
misclassification, for which the misclassification probabilities are recorded by the 
data protector. PRAM is also related to the Randomised Response (RR) technique. 
However, RR is performed when the questions are being asked, while PRAM is only 
applied after the answer has been provided. 

When PRAM is used, for each record in a microdata file, the score on one or more 
categorical variables is changed – or not – based on a certain probability. This is 
done independently on all the records. The probability mechanism that determines 
the transition of the scores is recorded in advance in a so-called Markov matrix. 

Because PRAM is a stochastic method, the disclosure risk is directly affected: if a 
discloser believes that he or she recognises a record, there is a certain probability 
that this record does not correspond to the person that the discloser is thinking of. 
After all, several scores on identifying variables are changed with a certain 
probability. 

The fact that the probability mechanism used is known when PRAM is applied 
means that it is possible, using the protected microdata and the Markov matrix, to 
construct unbiased estimators for certain statistical attributes of the original data. In 
addition, techniques from the misclassification and the Randomised Response can 
also be used. 

For a detailed description of PRAM, we refer to Gouweleeuw et al. (1998a and 
1998b). 

2.7.2 Applicability 

The Statistics Netherlands policy for the statistical disclosure control of microdata 
under contract states that the identification of individual people must be prevented 
(or, in any case, it must be made more difficult). To identify an individual person, a 
discloser will have to use identifying variables, such as gender, marital status, age 
and educational level. Naturally, this only works if the discloser is certain that the 
variables in the file provided are actually the true scores. By applying PRAM to 
identifying variables, this certainty is eliminated: there is now a positive probability 
that the score is no longer the original score.  

In the statistical disclosure control of a microdata file under contract, it is generally 
not possible to include very detailed regional variables. This is particularly the case 
if other detailed identifying variables are present in the file. In this situation, the 
traditional statistical disclosure control methods, such as recoding, top-coding and 
local suppression, would produce a file that is virtually unusable for analyses in 
which the regional detail is important. PRAM would then be a possible alternative: 
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the detail level is maintained, but the actual score on an identifying variable can no 
longer be seen with certainty. 

A user of a file that is protected using PRAM, however, must have sufficient 
statistical knowledge to be able to correct his or her desired analysis method for the 
changes made to the records. How these methods must be adapted is known for 
several analysis methods. See, for example, Gouweleeuw et al. (1998a and 1998b), 
Van den Hout (1999), Van den Hout and van der Heijden (2002) and Ronning et al. 
(2004). 

Files that are protected using PRAM are thus mainly intended for theoretically or 
otherwise experienced statisticians. In addition, microdata files on which PRAM 
was applied can also be used as “test files”; for example, to test scripts or to 
determine research trends. The ultimate definitive analysis would then have to be 
performed on the original (unprotected) file by means of remote execution or an 
onsite session. 

2.7.3 Detailed description 

For a detailed theoretical description of the method, please refer to Gouweleeuw et 
al. (1998a and 1998b). 

The Markov matrix with transition probabilities plays an important role in the 
application of PRAM. The transition probabilities determine the level of protection 
and affect the information loss. It is therefore important to properly select these 
probabilities. Each user will experience information loss in a different way. It is 
therefore preferable to keep the users’ wishes in mind when determining the 
transition probabilities. De Wolf (2006) provides different measures for information 
loss. 

Because PRAM is a stochastic disclosure control method, the standard rules as 
described in the Statistical Disclosure Control Handbook (Hundepool et al., 2006) 
are not directly applicable. However, alternative rules are provided in, for example, 
De Wolf (2006), and these are related to the standard rules from the Statistical 
Disclosure Control Handbook.  

It should be clear that the selection of the transition probabilities is not an easy task. 
There is no universal way to take the right decision in every situation. The following 
questions play a role in determining the transition probabilities: 

• On which variables will PRAM be applied? 

• Will PRAM be applied independently on these variables or on a subset 
thereof? 

• Are there impossible combinations that must be prevented by setting the 
associated transition probabilities to zero? 

• What effect does it have on the information loss? 

• What effect does it have on the disclosure risk? 
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For each case, the answers to these questions will determine the selection of the 
specific transition probabilities. There is therefore no universal method available to 
determine the ideal transition probabilities. 

For an empirical study into the consequences of different possibilities for the 
transition probabilities on both the disclosure risk and the information loss, please 
refer to De Wolf (2006). 

When selecting a matrix of transition probabilities, a number of typical structures are 
possible. For example, a band matrix with bandwidth b can be useful for ordinal 
variables such as Age. In that case, an age can be replaced with a certain probability 
by an age within plus or minus b years. Completely filled matrices are mainly useful 
for nominal variables with a limited number of categories, such as the variable 
Marital status. See Figure 7 for a few examples. 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

90.010.000
20.060.020.00
010.080.010.0
0020.080.0

67.011.011.011.0
09.073.009.009.0
02.002.094.002.0
10.010.010.070.0

 

(a)     (b) 

Figure 7: Examples of matrices with transition probabilities: (a) Completely filled 
matrix, (b) Band matrix with bandwidth 1 

For other variables, a block matrix is a more obvious solution. For example, for a 
variable such as Region (at city/town level), we can consider a block matrix in 
which the blocks correspond to the Provinces. In this way, cities can only be 
replaced by other cities from the same province. See Figure 8 for an example of a 
block matrix with transition probabilities. 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

90.005.005.000000
09.082.009.000000
10.015.075.000000
00070.015.015.000
00010.080.010.000
00010.020.070.000
00000080.020.0
00000010.090.0

 

Figure 8: Example of a block matrix with three blocks with transition probabilities. 

2.7.4 Example 

At present, μ-ARGUS only offers a limited facility to perform statistical disclosure 
control using PRAM. In that package, it is possible to apply PRAM per variable, for 
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which the Markov matrix may either be a band matrix or a completely filled matrix. 
The bandwidth of a band matrix is adjustable, the same as the diagonal probabilities 
(the probabilities that certain categories do not change).  

Because PRAM is a stochastic disclosure control method (only the transition 
probabilities are recorded), a protected file may look different after every 
application of PRAM: such a protected file is, in any case, the outcome of a 
probability experiment. Analyses can therefore only be corrected in expectation for 
the fact that they are used on a file that is protected using PRAM. This means that, 
for example, the expectation for corrected estimated parameters will be the same as 
the parameter estimations based on the original file. 

To obtain an impression of possible adaptations of analyses, consider the simple 
case of PRAM applied to the variable Gender (two categories), in which we want to 
estimate the frequency table for the number of men and the number of women. We 
notate the variable Gender by ξ , where ξ = 1 = Man and ξ = 2 = Woman. We notate 
the associated frequency table by Tξ . Suppose that the original file contains 100 
men and 100 women, so Tξ = (100, 100)t . PRAM is applied to the variable Gender 
using the following matrix with transition probabilities: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

80.020.0
10.090.0

P . (2.7.1) 

Written out: the probability that the gender Man will be changed to Woman is 10%, 
the probability that the gender Woman will be changed to Man is 20%. The variable 
ξ is notated as X after the application of PRAM. The frequency table of Gender 
based on the protected file is then written TX. It can easily be derived that  

 ( ) ξξ TPT t
XE = , (2.7.2) 

where the expectation is conditional on the original file. In the example, this means 
that it is expected that 110 men and 90 women will occur in the protected file. An 
unbiased estimator for the original frequency table follows directly from equation 
(2.7.2), i.e. 

 ( ) X
t TPT 1ˆ −=ξ . (2.7.3) 

The original frequency table will only be reproduced in expectation by this corrected 
estimator. In other words, 

 ( ) ξξ ξ TT =ˆE . (2.7.4) 

Suppose that the protected file contains 112 men and 88 women (Please note: this is 
an example, because this can differ for each realisation of the probability 
experiment), then the unbiased estimation (rounded to whole numbers) would be 
represented by  

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

−
−

97
103

88
112

80.010.0
20.090.0ˆ

1
1

X
t TPTξ . (2.7.5) 
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Note that this corrected estimation of the frequency table is much closer to the 
original frequency than the uncorrected estimation (the direct count from the 
protected file), but that the exact original values were not obtained.  

2.8 Conclusion 

The package μ-ARGUS is available at Statistics Netherlands to protect microdata 
files. For a detailed description of the package, we refer to the associated manual 
(Hundepool et al., 2007). 

When μ-ARGUS is used, a report is made after each session in which one or more 
files were protected. This report includes the methods and parameters used. 

With μ-ARGUS, it is easy to see the effects of different statistical disclosure control 
methods. Methods can be applied and then also undone (within a single session). 
The automatically generated report can be used to easily derive for a subsequent 
version of the same file which method or combinations of methods were ultimately 
used. 

Because μ-ARGUS was and is being developed in a European context, it also includes 
several methods that are not described in this Methods Series. These are methods 
that are used by several other EU countries, but not by Statistics Netherlands. 
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3. Statistical Disclosure Control of Quantitative Tables 

3.1 General description and reading guide 

3.1.1 General description 

The statistical disclosure control of quantitative tables encompasses the production 
of quantitative tables that satisfy Statistics Netherlands policy for statistical 
disclosure control and, as such, can be published. The disclosure control policy for 
quantitative tables is set down in chapter 4 of the Statistical Disclosure Control 
Handbook (Hundepool et al., 2006). Quantitative tables are tables in which the cell 
values are composed by summation of a continuous variable over all the contributors 
to a cell. This is in contrast to frequency tables in which only the number of 
contributors per cell is given. Other rules apply to frequency tables, and other 
protection methods may be more suitable than those for quantitative tables. 
Disclosure control methods for frequency tables are discussed in the subtheme 
“Statistical Disclosure Control of Frequency Tables”. 

If exactly one or two contributors produce a cell total, it is clear that this cell cannot 
be published. In the case of a single contributor, individual information is released 
directly, and in the case of two contributors, one contributor can exactly calculate 
the other contribution by subtracting his or her own contribution from the cell total. 

However, undesirable situations can arise also if there are more than two 
contributors in a cell. In principle, in the statistical disclosure control of quantitative 
tables, we must prevent (or at least make it more difficult) that a any contribution 
can be estimated too accurately. This may occur, for example, also in the case that a 
very large contributor is present in a single cell along with several relatively small 
contributors. In this case, the second-largest contributor can calculate that the largest 
contribution does not contribute more than the cell total minus the second-largest 
contribution to the cell. A relatively good estimation of the contribution of the 
largest contributor can be obtained as a result, in conflict with the disclosure control 
rules of Statistics Netherlands. 

The presence of empty cells also requires extra attention. In some cases, an empty 
cell will be a so-called structural zero cell. This means that it is generally known 
that, logically, it is impossible for this cell to have a contribution. Such cells can 
therefore also not be used in the disclosure control: whatever you do, everyone 
knows that they must be empty cells.  

At the same time, reliable information can sometimes be disclosed using non-
structural zero cells. If there are contributors in such a cell, there is actually a sort of 
group disclosure: it is immediately clear that all the contributors have provided a 
contribution of zero (assuming that the contributions are non-negative). If there are 
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no contributors in the cell, but it is not automatically impossible for a contributor to 
be in this cell, this in itself also reveals direct information. 

The methods described in this subtheme can be easily applied using the software 
package τ-ARGUS. This package was developed by DMV in a European context. 

3.1.2 Reading guide 

As the initial step in determining the correct statistical disclosure control for a 
quantitative table, it will first have to be determined whether disclosure is possible. 
In the first instance, the basis for this is “common sense”: is there information 
present in the table that may not be disclosed about individual respondents? For 
quantitative tables, such information is generally a respondent’s individual 
contribution to the total of a specific cell in the table. 

In addition, an objective method is needed to determine which cells in the table 
contain respondents that potentially run a risk of their individual contribution being 
disclosed. The p% rule (see section 3.3) is intended to identify such primary risky 
cells. This method can only be used for quantitative tables and not for frequency 
tables. 

After the risky cells have been identified, the table will generally have to be further 
protected. There are three general methods available for this purpose: restructuring 
the table (see section 3.4), suppressing cells (see section 3.5) and rounding (see 
section 3.6). 

Which method or combination thereof is ultimately used in a specific situation 
cannot be determined in advance. This depends to a significant extent on the 
intended users. For example, in Eurostat regulations, it is not always possible to 
restructure the table, and cell suppression will often have to be chosen. The 
department responsible for the quantitative table concerned is also responsible for 
the adequate statistical disclosure control of the table. When selecting the method or 
methods to be used, two competing aspects must be taken into account: 

• disclosure risk; 

• information loss. 

In general, it can be said that reducing the disclosure will lead to increased 
information loss. The converse is also true: the smaller the information loss, the 
larger the disclosure risk. In certain cases, an assessment will have to be made, in 
which, at a minimum, the rules in the Statistical Disclosure Control Handbook 
(Hundepool et al., 2006) will always have to be satisfied. 

3.2 Scope and relationship with other themes and subthemes 

This subtheme discusses methods that can be used for the statistical disclosure 
control of quantitative tables. This chapter does not discuss any methods that can 
only be used for frequency tables. For such methods, see the subtheme “Statistical 
Disclosure Control of Frequency Tables”. 
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A few of the methods described in this chapter can, in principle, be used for 
quantitative tables as well as for frequency tables. Such methods will be repeated in 
the subtheme “Statistical Disclosure Control of Frequency Tables”. 

The methods in this chapter can be divided into two variants: methods for 
determining the primary (or other) risky cells of a quantitative table and methods for 
making tables with risky cells suitable for publication. 

3.3 P % rule 

3.3.1 Short description 

The goal of statistical disclosure control is to prevent the disclosure of information 
about individual contributors to a table, or at least to make this more difficult. To 
achieve this, the cells where there is a risk of possible disclosure will first have to be 
identified. An objective measure is needed for this, one that indicates how well an 
individual contribution to a cell can be estimated based on the published table. The 
p % rule provides for this. This is also the method to use to indicate to what extent 
the disclosure control rule has been violated and how large the measures to be taken 
must be. 

3.3.2 Applicability 

Before a quantitative table can be protected statistically, it must first be indicated 
where potential problems occur in that table. The p % rule indicates how well a 
contributor in a cell would be able to estimate another contributor in that same cell. 
This serves to determine the primary risky cells, and it also gives an indication how 
much protection must be provided to satisfy the Statistics Netherlands policy for the 
publication of quantitative tables. 

With this method, account can also be taken of possible authorisations/waivers: 
contributors who have indicated that they do not object to publications from which 
their contribution can be derived. Such contributors are then simply excluded in the 
application of the p % rule. 

The p % rule may only be used:  

• in the case of quantitative tables; 

• with non-negative contributors; 

• for which the largest contributors are identifiable for the discloser; 

• on non-empty cells with a positive cell total. 

3.3.3 Detailed description 

Let TA be the cell value of cell A in the table in question. Denote the largest 
contributor without a waiver by Xs and the largest of the remaining contributors by 
Xr. Then cell TA is risky if: 



 

23 

 
( )

100
p

X
XXT

s

srA <
−−

.  (3.3.1) 

That is, in the situation of no waivers, a cell is risky if the second-largest contributor 
can estimate the largest contributor with an accuracy exceeding p %.  

It is simple to see that this is the worst scenario: if the second-largest contributor 
cannot estimate the largest contributor more accurately than p %, then no other 
contributor can estimate an arbitrary other contributor more accurately than that p %, 
and therefore the cell is safe. In other words: the most accurate estimation can be 
made by the second-largest contributor, when this party estimates the largest 
contribution. 

The value of the difference between the left side and the right side of the inequality 
in formula (3.3.1) also indicates how much protection a risky cell needs. For more 
detail, please refer to Loeve (2001). 

With the standard software at Statistics Netherlands for the protection of tables, 
τ-ARGUS, it is easy to apply the p % rule. This method is one of the standard built-in 
rules that can be used to identify the primary risky cells. Moreover, τ-ARGUS 
automatically calculates how much protection a risky cell needs and uses that in the 
further protection of the table concerned. To make it possible for τ-ARGUS to 
identify the primary risky cells using the p % rule, however, it is necessary that the 
input for τ-ARGUS consists of the microdata from which the table concerned is 
composed. To apply the p % rule, information is needed, in any case, about the 
individual contributors. For more information about the use of τ-ARGUS, please refer 
to the associated manual (Hundepool et al., 2003). 

The value selected for p is determined by Statistics Netherlands policy. The 
Statistical Disclosure Control Handbook from Statistics Netherlands (Hundepool et 
al., 2006) gives an interval within which p should be selected (5 ≤ p ≤ 15). The exact 
value for p is determined by the statistical division and may never be revealed to 
external parties, because this could help them in the calculation of the suppressed 
cells.  

A large value for p results in strict disclosure control, because, when estimating an 
arbitrary contribution in that case, not even a relatively “large” error may be made. 
A small value for p results in less strict disclosure control, because a cell is only 
risky in this situation if a contribution can be estimated very accurately. 

3.3.4 Example 

In this fictitious example, we look at a cell in a table with turnover according to SBI 
(the Dutch Standard Industrial Classification) and Region. Suppose that the cell with 
SBI = 32 and Region = Noord Brabant consists of four contributors with the values 
324, 4, 2 and 10. Suppose that we want to use the p % rule where p = 5, then we 
must first sort the contributors: X1 = 324, X2 = 10, X3 = 4 and X4 = 2. The cell total TA 
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is then 340. If we calculate the quotient from formula (3.3.1), we obtain the value 
0.0185. This is clearly smaller than 5 %, and therefore the cell is risky. 

3.4 Table restructuring 

3.4.1 Short description 

Section 3.3 describes when a cell in a table must be considered risky. In general, 
cells with a limited number of contributors or a cell with one or two large 
contributors are the obvious candidates to be characterised as risky. All risky cells 
must be protected. Before performing suppression on a large scale, restructuring the 
table can also be considered. By combining rows and/or columns, cells are pooled 
and the content per cell is increased. The result of this is that fewer cells are 
identified as risky by the p % rule, as described in section 3.3. 

3.4.2 Applicability 

This method will generally lead to fewer risky cells in the table. Combining cells 
creates cells that are safer than the individual cells that were combined. 

There are no methodological conditions for using this method. However, externally 
imposed obligations sometimes specify what detail level of a table must be 
published. This may be a Eurostat obligation, but Statistics Netherlands policy can 
also mean that a certain detail level of a table must be published. In these cases, the 
method can be applied from a technical perspective, but its use is prevented by 
external policy decisions. 

Furthermore, an assessment must be made between the information loss resulting 
from the larger number of crosses (suppressed cells) that are needed to protect the 
table, and the information loss resulting from combining columns/rows, for which 
fewer crosses are needed. 

3.4.3 Detailed description 

The software package τ-ARGUS has provisions for recoding rows and/or columns in 
tables. In this regard, a distinction is made between two situations: 

• In the case of a hierarchical spanning variable, the recoding implies that 
certain splits are omitted at the lowest level.  

• In the case of an unstructured spanning variable, users are free to combine 
the columns or rows of a table as they choose. 

3.4.4 Example 

Figure 9 presents a fictitious table of the turnover according to Region (hierarchical) 
and SizeClass. Figure 10 provides two possible restructuring possibilities for this 
table. The variable SizeClass is recoded such that the categories 2 to 6 are combined 
into the category MediumSmall, and that the categories 7, 8 and 9 are combined into 
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the category Large. Note that, in this way, all the primary risky cells are combined to 
create safe cells. In the recoding of the variable Region the smallest detail level has 
been removed. This restructuring does not resolve all the problems: the primary 
risky cells at region level (for North and East) are still present in the table. 

 

Figure 9: Quantitative table for turnover according to region and size class 

 

 

(a) Recoding of SizeClass (all primary risky cells have been protected) 

 

(b) Recoding of Region (not all primary risky cells have been protected) 

Figure 10: Two possible restructuring possibilities used on the table from Figure 9 

3.5 Cell suppression  

3.5.1 Short description 

A frequently used method to protect primary risky cells is to suppress (not publish) 
certain cells. The cell value is then simply replaced by an X (×). 
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In a quantitative table when the marginals are also provided, however, it is often not 
sufficient to suppress only the primary risky cells. If a suppressed cell is the only 
suppressed cell in a row, the suppressed value can, after all, simply be calculated by 
subtracting the other cell values in that row from the corresponding marginal. 

To sufficiently protect primary risky cells, it is therefore also necessary to suppress 
other cells which, in themselves, are safe. This is called secondary suppression. It is 
not easy to perform this in such a way such that the primary risky cells are protected 
sufficiently, while also ensuring that not too much information is removed from the 
table. Furthermore, account must also be taken of the fact that structural zero cells 
cannot be used as secondary suppressions: everyone knows that, by definition, these 
cells are empty. 

To prevent a situation where suppressed, primary risky cells can be calculated 
exactly, secondary suppressions are therefore necessary. However, also a “too 
accurate” estimation for a suppressed cell is not desirable. Indeed, what is the 
difference between the following statements: “This suppressed cell actually has a 
value of 10000” and “This suppressed cell actually has a value of between 9998 and 
10002”. Given a suppression pattern, it is always1 possible to calculate an interval in 
which a suppressed cell must lie. The method of “Cell Suppression” must then also 
produce a suppression pattern, for which the intervals that can be calculated are 
sufficiently large. The size of these intervals is determined by the rule that is used to 
determine the primary risky cells. 

Fischetti and Salazar (2000) have developed a method to solve the above problem in 
an optimal manner. Their method is, in theory, applicable to arbitrary, additive 
tables with non-negative contributors. In practice, however, their solution involves 
too much computing time if the tables become too large, either in size or 
complexity. This is why a number of suboptimal methods have been developed to 
find suitable suppression patterns for larger and/or more complex tables. 

For example, the “modular approach” (HiTaS) splits a hierarchical table into a large 
number of non-hierarchical subtables and applies the optimal method to each 
individual subtable. By correctly combining the results, a suboptimal solution can be 
obtained for the entire table, with a significantly shorter computing time. 

The “hypercube approach” can also protect large tables by protecting the subtables 
in a certain iterative way. The protection of each subtable also takes place 
suboptimally. Consequently, the approach is relatively fast, but, in general, more 
cells are suppressed than strictly necessary to obtain a protected table. 

3.5.2 Applicability 

This method can be used to adequately protect quantitative tables with cells that do 
not satisfy the requirements of the Statistics Netherlands statistical disclosure control 

                                                      
1 In the case that the table is composed of non-negative contributors and the marginals are 
also given. 
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policy. In particular, if the table cannot be restructured further or at all, the cell 
suppression method can be used effectively. 

The contributions to the table to be protected must not be negative and the table 
must be additive, and the marginals must also be provided. 

In the modular approach, the table must be three-dimensional at a maximum. Each 
dimension may be hierarchical. Linked tables can be protected by copying the 
suppressions from one table to the other, and then protecting the tables. This should 
then possibly be performed in an iterative manner. Recent developments in τ-ARGUS 
make it possible to solve the linked tables problem automatically. 

In the hypercube approach as implemented in τ-ARGUS, the table may be seven-
dimensional at a maximum. The table may be hierarchical in every dimension. 
Linked tables are also possible in principle.  

It should be mentioned that for both approaches, from a performance perspective, 
the recommendation is to avoid using long, unstructured (non-hierarchical) code 
lists. 

3.5.3 Detailed description 

The software package τ-ARGUS has a provision to apply cell suppression to 
quantitative tables. If the original microdata is used as input, τ-ARGUS will 
determine the primary risky cells with the associated safety intervals (see also 
section 3.3).  

After this, τ-ARGUS will have to determine a suppression pattern that guarantees the 
necessary safety intervals. There are various options for this. We will discuss the 
two approaches that are the most interesting for Statistics Netherlands. 

3.5.3.1 Modular approach 

For a detailed description and an elaborated example of the modular approach, see 
De Wolf (2002).  

Generally, the modular approach can be described as follows: 

1. Split the hierarchical table into all logical non-hierarchical subtables. 

2. Group the subtables in classes in such a way that all tables in a single class 
can be protected independently of each other. For a suitable classification, 
see De Wolf (2002). 

3. Protect all tables in class K. 

4. If no secondary suppressions are placed in the marginals of the subtables of 
class K, continue with class K + 1, including any secondary suppressions in 
the inside of a table as primary suppressions for class K + 1.  

5. If secondary suppressions do have to be placed in a marginal of at least one 
subtable, go back to class K – 1, including only the secondary suppressions 
in the marginals as primary suppressions. 
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6. Repeat steps 4 and/or 5 until all subtables have been protected at the lowest 
(most detailed) hierarchical level. 

All non-hierarchical subtables will be protected using the mixed integer approach 
from Fischetti and Salazar (2000). In this approach, the required safety intervals are 
guaranteed, while a certain cost function is minimised. This cost function can be 
selected in different ways, as a result of which various forms of information loss can 
be minimised. This minimisation takes place locally, so that the ultimate solution for 
the entire (hierarchical) table does not necessarily also have to be optimal.  

In selecting the cost function in τ-ARGUS, several options can be selected, including: 

• A variable from the dataset (such as the quantitative value on which 
tabulation takes place); 

• A constant (so that the number of suppressions is minimised); 

• The number of contributors per cell (so that the total number of 
suppressed contributions is minimised). 

In the disclosure control of a subtable, also the so-called singletons problem must be 
taken into account: cells with only one contribution. If such cells are in a 
suppression pattern, the contributors involved can reverse part or all of the 
suppression pattern. After all, they know what their own contribution is and can 
therefore fill in that suppressed value, as a result of which it may also be possible to 
calculate other suppressed cells. In the current implementation of the mixed integer 
approach in τ-ARGUS, it is not possible to keep each conceivable combination of a 
singleton with another suppressed cell under control while searching for a 
suppression pattern. However, it is possible to take account of the combinations 
within a single row, column or layer2 in the table. The combinations which must be 
taken into account consist of exactly two primary risky cells in a single row, column 
or layer, of which at least one cell is a singleton. By giving the larger of these two 
primary risky cells a safety interval that is just large enough that it cannot be 
satisfied by the other primary risky cell, at least one extra secondary suppression 
will always be made in the row, column or layer concerned. 

In a similar way, it is ensured that, within a single row, column or layer, all the 
suppressed cells together contain more than the minimum required number of 
contributors for a safe cell. 

3.5.3.2 Hypercube approach 

For a more detailed description of the hypercube approach, see Giessing and 
Repsilber (2002).  

                                                      
2 A row consists of the cells with coordinates (r, k, l) where k and l are fixed. A column 
consists of the cells with the coordinates (r, k, l) where r and l are fixed. A layer consists of 
the cells with coordinates (r, k, l) where r and k are fixed. 
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In this approach too, a hierarchical table is split into non-hierarchical subtables. The 
non-hierarchical subtables are then protected in a certain order, where the subtables 
at the highest level are dealt with first.  

For each subtable, all possible hypercubes are constructed for each primary risky 
cell in which that primary risky cell is one of the corner points. For each hypercube, 
the interval is calculated around the primary risky cell if all other corner points of 
the hypercube are also suppressed. If that interval is large enough (depending on the 
protection rule used), the associated hypercube is designated as “feasible”. The 
information loss is then calculated for each feasible hypercube. Finally, the 
admissible hypercube with the smallest information loss is selected to protect the 
primary risky cell concerned.  

No linear programming problem needs to be solved in order to calculate the safety 
intervals resulting from a hypercube. This significantly accelerates the procedure. 
The hypercube approach is therefore, in general, faster than the modular approach, 
for which a mixed integer programming problem needs to be solved. 

After all subtables are protected in this way, the entire procedure is repeated. 
Secondary suppressed cells from a certain subtable that also occur in other subtables 
are considered as primary risky cells in those other subtables, and dealt with as such. 
This process is repeated until no more changes take place. 

Note that the use of hypercubes to protect primary risky cells is a sufficient but not 
necessary condition for a safe suppression pattern. In other words, in some cases, the 
combination of the different hypercubes will not lead to an optimal suppression 
pattern, but it will always produce a safe suppression pattern. Consequently, this 
approach tends to suppress more cells than necessary for a safe suppression pattern. 

This approach also takes account of the so-called singletons. A cell with only one 
contributor would indeed allow all suppressed corner points of a hypercube to be 
calculated. Therefore the extra requirement in the case of singletons is that this type 
of cell must be a corner point of at least two different hypercubes.  

3.5.4 Example 

Using τ-ARGUS, it is easy to apply cell suppression to a quantitative table. Both the 
modular approach and the hypercube approach are implemented in τ-ARGUS. It is 
also possible to select multiple information loss measures for the cost function that 
must be minimised. For the use of τ-ARGUS, please refer to the associated manual 
(Hundepool et al., 2003). 

Figure 11 presents an example of a table in which only the primary risky cells are 
suppressed.  
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Figure 11: Quantitative table for turnover according to region and size class 

It is clear that this is not sufficient: both the cell (East, 4) and the cell (4, 9) can be 
directly calculated: (East, 4) = 3 703 896 – 15 – 642 238 – 515 003 – 534 147 – 
620 392 – 1 392 096 = 5 and (4, 9) = 1 392 096 – 145 004 – 1 083 254 – 151 870 = 
11 968. 

Figure 12 shows the suppression pattern that was determined with τ-ARGUS using 
the hypercube approach. Figure 13 shows the same based on the modular approach. 
Of course, in a publication, it should be impossible to make a distinction between 
primary and secondary suppressions. 

 

 

Figure 12: Suppression pattern for the table from Figure 11, using the hypercube 
approach 
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Figure 13: Suppression pattern for the table from Figure 11, using the modular 
approach 

3.5.5 Quality indicators 

If a table is protected by means of cell suppression, it is possible to calculate the 
realised safety interval for each suppressed cell. Given the suppression pattern and 
the structure of the table, two LP-problems must be solved for each suppressed cell 
(minimising and maximising the value for the suppressed cell).  

If τ-ARGUS is used for the protection of a quantitative table, at the end of the session, 
a report is generated that contains the steps taken and the associated results. It is also 
possible during the session to obtain information about the protected or unprotected 
table (for example: the number of primary risky cells, the number of secondary 
suppressions, information loss). 

3.6 Additive rounding 

3.6.1 Short description 

When rounding cell values in a quantitative table, the exact cell values are only 
known within a certain interval. A table with primary risky cells can also be 
protected in this way. The extent to which rounding is performed will, of course, 
have an impact on the size of the intervals. If each cell is rounded independently, the 
additivity of the table will not necessarily be maintained. 

Of course, there is a simple way to guarantee the additivity: by rounding the cells in 
the interior of the table independently of each other and then recalculating the 
marginals. As a result, however, the marginals can deviate significantly from the 
rounded original values. 

In additive rounding, the table is rounded such that the additivity is maintained and 
that the rounded table deviates from the original as little as possible. Furthermore, it 
is possible to perform additive rounding in such a way that safety intervals specified 
in advance can also be guaranteed. Whether this can be achieved, however, depends 
on the size of the selected rounding base in relation to the safety intervals.  
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3.6.2 Applicability 

Additive rounding can be used for the statistical disclosure control of both 
quantitative tables and frequency tables. Often, a presentation argument will also 
play a role: a large number of significant figures suggests a high degree of precision 
that is not always justified because of sampling errors and measurement errors. 
Rounding the table values reduces this false precision to a certain extent.  

3.6.3 Detailed description 

In additive rounding, the cell values in a table are rounded to multiples of a rounding 
base b, keeping the totals and subtotals in the table equal to the sum of the 
corresponding parts.  

Oftentimes, additive rounding is performed in a “zero restricted” manner. In other 
words, cell values that are already a multiple of the rounding base are not changed, 
while the other cell values are rounded to one of the adjacent multiples of that 
rounding base. The rounded values are selected such that the sum of the absolute 
deviations of the cell values in the rounded table with respect to the cell values in the 
original table is minimised, under the restriction that the rounded table remains 
additive. As a result, it is possible that cell values are not rounded to the closest 
multiple of the rounding base.  

In certain conditions, it is not possible to construct a rounded table under the 
scenario described above. In that case, the restriction that rounding is performed to 
one of the adjacent multiples of the rounding base is weakened by allowing a cell 
value to also be rounded to non-adjacent multiples of the rounding base. This 
weakening can be limited slightly by determining a maximum for the number of 
steps that may exist between the rounded value and the original value. 

In the case of “zero restricted” additive rounding using rounding base b > 0 of the 
non-negative number z = ub + r, where 0 ≤ r < b, rounding is performed on the 
number a, such that 

 ( ){ }bruuba b )(1, ),0(+∈  (3.6.1) 

where )(1 ),0( rb  is equal to 1 if r ∈ (0, b) and equal to 0 if r = 0.  

This means that, in the case that r = 0, a is always rounded to ub and, in the case that 
r ∈ (0, b), a is always rounded to ub or to (u + 1)b. 

If, however, the restriction is weakened by a maximum of K > 0 steps further than 
the adjacent multiples of the rounding base, then rounding is performed on the 
number a, such that 

 ( ) ( ){ })(1,,|)(0 ),0( rKKjbjua b+−=+∨∈ K  (3.6.2) 

where ),max( yxyx =∨ . 
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Multiple additive rounded versions may exist for a given table. These are all feasible 
tables. The table closest to the original table can subsequently be selected from the 
feasible tables. In τ-ARGUS, the distance that is minimised is represented by 

 ∑
=

−
N

i
ii az

1
 (3.6.3) 

where N is the number of cells in the table (including all totals and subtotals), zi the 
cell values in the original table and ai the corresponding rounded cell values.  

Finding the optimal solution is a problem that requires intensive computation (NP-
complete). For large tables, this can result in unacceptably long calculation times. 
Partitioning is built into τ-ARGUS for this reason: a large table can be split into a 
number of subtables that are rounded individually. After these subtables are 
rounded, they are combined, calculating (if necessary) the totals and subtotals in 
question from the rounded parts. 

3.6.4 Example 

τ-ARGUS can be used to easily perform additive rounding on quantitative tables, 
while the desired protection margins are guaranteed. 

Figure 14 presents an example of a table that contains a number of primary risky 
cells. Figure 15 contains the associated additively rounded table, with a rounding 
base of 2000. Of course, in a publication, the primary risky cells are not allowed to 
be recognisable. 

 

 

Figure 14: Quantitative table for turnover according to Region and Size class 
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Figure 15: Table from Figure 14, protectively additively rounded with a rounding 
base of 2000 

3.7 Conclusion 

The package τ-ARGUS is available at Statistics Netherlands for the protection of 
quantitative tables. For a detailed description of that package, please refer to its 
associated manual (Hundepool et al., 2007). 

When τ-ARGUS is used, a report is generated after each session in which one or more 
tables are protected. That report includes the methods and parameters used. 

Using τ-ARGUS, the effects of various statistical disclosure control methods on the 
tables can easily be made visible. The different methods can be applied, but they can 
also be ‘undone’ during the same session. 
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4. Statistical Disclosure Control of Frequency Tables 

4.1 General description and reading guide 

4.1.1 General description 

The statistical disclosure control of frequency tables encompasses the production of 
frequency tables that satisfy the Statistics Netherlands policy on statistical disclosure 
control and can be published as such. The disclosure control policy for frequency 
tables is laid down in chapter 5 of the Statistical Disclosure Control Handbook 
(Hundepool et al., 2006). Frequency tables are tables in which the number of 
contributors per cell is given. This is in contrast to quantitative tables in which the 
cell values are created by summation of a continuous variable over all the 
contributors to a cell. Other rules apply to quantitative tables, and other protection 
methods may be more suitable than those for frequency tables. Disclosure control 
methods for quantitative tables are discussed in the subtheme “Statistical Disclosure 
Control of Quantitative Tables”.  

Article 37 of the Statistics Netherlands Act (2004) requires the protection of 
recognisable data about statistical units. A violation of the statistical confidentiality 
(“disclosure”) boils down to the combination of two facts: the recognition of a unit 
and the disclosure of further details about that unit. 

For frequency tables, this can be formulated as follows. The user must first 
recognise a contributor or group of contributors in the table. This is followed by a 
statement about these contributor(s) due to the frequency distribution over the cells. 
The statement that the table makes possible about this group must provide more 
information about the members of the group than just the group size. In this sense, 
knowledge that is needed to recognise the members of the group is not considered 
information about the members of the group. 

The statutory requirement is satisfied if the table does not provide any information 
about an individual statistical unit as such. The statistical professional standards and 
Statistics Netherlands’ own interest in the continuity of reporting to Statistics 
Netherlands, however, leads in certain cases to the requirement that the table does 
not provide information about groups of statistical units (people or households, etc.). 
In particular, that is the case if the table contains variables that could provide 
harmful or potentially damaging information about these groups. Such data will be 
referred to hereinafter as “sensitive data”. 

The methods described in this subtheme can be easily applied using the software 
package τ-ARGUS. This package was developed by DMV (and its predecessors) in a 
European context. 
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4.1.2 Reading guide 

As the first step in determining the correct statistical disclosure control for a 
frequency table, it will have to be determined whether disclosure is possible. In the 
first instance, the basis for this is “common sense”: is there information present in 
the table that may not be disclosed about individual respondents? For frequency 
tables, such information can be hidden in the spanning variables. Part of the 
spanning variables can be considered as identifying variables and the rest as 
sensitive. With respect to sensitivity, an additional distinction is made in regard to 
the degree of sensitivity. See Hundepool et al. (2006) for more information. 

Once risky situations have been identified, the table will generally have to be further 
protected. There are three general methods available for this purpose: restructuring 
the table (see section 4.4), suppression (see section 4.5) and rounding (see section 
4.6). 

Which method or combination thereof is ultimately used in a specific situation 
cannot be determined in advance. This depends significantly on the intended users. 
For example, in Eurostat regulations, it is not always possible to restructure the 
table, and cell suppression or rounding will often have to be selected. The 
department responsible for the frequency table concerned is also responsible for the 
adequate statistical disclosure control thereof. When selecting the method or 
methods to be used, two competing aspects must be taken into account: 

• disclosure risk; 

• information loss. 

In general, it can be said that reducing the disclosure risk will lead to increased 
information loss. The converse is also true: the smaller the information loss, the 
larger the disclosure risk. In certain cases, an assessment will have to be made, in 
which, at a minimum, the rules in the Statistical Disclosure Control Handbook 
(Hundepool et al., 2006) will always have to be satisfied. 

4.2 Scope and relationship with other themes and subthemes 

This subtheme discusses methods that are used for the statistical disclosure control 
of frequency tables. This chapter does not discuss any methods that are only used for 
quantitative tables. For these methods, see the subtheme “Statistical Disclosure 
Control of Quantitative Tables”. 

A few of the methods described in this chapter can, in principle, be used for both 
quantitative tables and frequency tables. Such methods will be repeated in the 
subtheme “Statistical Disclosure Control of Quantitative Tables”. 

The methods in this chapter can be divided into two variants: methods for 
determining the primary (or other) risky cells of a frequency table and methods for 
making tables with risky cells suitable for publication. 
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4.3 Temporar y standardisation of a frequency table 

4.3.1 Short description 

The goal of statistical disclosure control is to prevent the disclosure of information 
about individual contributors to a table, or at least to make this more difficult. To 
achieve this, the cells will first have to be identified where there is risk of a possible 
disclosure. In frequency tables, at least two aspects play a role in this: recognisable 
groups and sensitive variables. Stated briefly, a risky situation occurs in a frequency 
table either if a cell that corresponds to a recognisable group of respondents contains 
too few respondents, or if the distribution of the respondents from a recognisable 
group is too concentrated in one or two categories. The Statistical Disclosure 
Control Handbook (Hundepool et al., 2006) sets out what Statistics Netherlands 
policy means by “too small” and “too concentrated”. 

To do this, it is useful to look at the frequency table in a standard format. In some 
cases, the frequency table will already be available in this format. In others, it will 
be necessarily to temporarily convert it. Once the frequency table has been 
protected, it can be restructured in its original format. 

4.3.2 Applicability 

Before a frequency table can be statistically protected, it will first have to be 
indicated where possible problems arise in that table. For this purpose, it is 
convenient to temporarily look at the frequency table in a standard way, so that a 
clear distinction is visible between identifying and sensitive variables. 

4.3.3 Detailed description 

To detect risky situations in frequency tables, it is necessary to divide the spanning 
variables into identifying variables and sensitive variables. The qualification for 
each variable can, in principle, be determined by the department concerned. To 
promote coordination between the different frequency tables to be published, it is a 
good idea to keep track of this centrally.  

Next, the frequency table can be restructured temporarily so that the identifying 
variables are included in the left-hand column and the categories of the sensitive 
variables are present in the other columns. This must also involve “hidden” variables 
that define the population or subpopulation that is the subject of the frequency table.  

The rules as referred to in Hundepool et al. (2006) can then be applied to the 
frequency table standardised in this way. 

4.3.4 Example  

Suppose that Table 1 is a frequency table of the number of people who, in a certain 
year, have died from a non-natural death, as stated in a publication3.  

                                                      
3 The figures in the table are fictitious. 
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Type of  Age 
non-natural death Gender Total <15 15-<20 20-<40 40-<60 60-<80 >=80 

Suicide Total 1530 8 43 418 674 298 89 
 Man 1027 8 34 297 453 181 54 
 Woman 503 - 9 121 221 117 35 
Murder and 
manslaughter Total 141 11 13 74 34 8 1 
 Man 96 9 5 47 32 2 1 
 Woman 45 2 8 27 2 6 - 
Traffic accident Total 880 47 120 380 67 179 87 
 Man 636 23 87 315 52 98 61 
 Woman 244 24 33 65 15 81 26 
Workplace accident Total 81 - 3 30 42 6 - 
 Man 79 - 3 28 42 6 - 
 Woman 2 - - 2 - - - 
Personal accident Total 2013 64 6 120 60 481 1282 
 Man 834 32 2 100 56 223 421 
 Woman 1179 32 4 20 4 258 861 
Other/unknown Total 110 2 6 24 8 37 33 
 Man 63 1 4 18 7 20 13 
 Woman 47 1 2 6 1 17 20 
Total Total 4755 132 191 1046 885 1009 1492 
 Man 2735 73 135 805 642 530 550 
 Woman 2020 59 56 241 243 479 942 

Table 1: Number of people who died from a non-natural death in year J  

The standardised form of this frequency table for statistical disclosure control is 
created by placing the identifying variables in the left-hand column and the sensitive 
variables in the other columns. In Table 1, the identifying variables are “Gender” 
and “Age”. The sensitive variable is the variable “Type of non-natural death”. The 
standardised version of Table 1 is presented in Table 2. 

 

  Type of non-natural death 

Gender Age Suicide 
Murder and 
manslaughter

Traffic 
accident 

Workplace 
accident 

Personal 
accident 

Other / 
Unknown Total 

Man <15 8 9 23 - 32 1 73 
 15-<20 34 5 87 3 2 4 135 
 20-<40 297 47 315 28 100 18 805 
 40-<60 453 32 52 42 56 7 642 
 60-<80 181 2 98 6 223 20 530 
 >=80 54 1 61 - 421 13 550 
 Total 1027 96 636 79 834 63 2735 
Woman <15 - 2 24 - 32 1 59 
 15-<20 9 8 33 - 4 2 56 
 20-<40 121 27 65 2 20 6 241 
 40-<60 221 2 15 - 4 1 243 
 60-<80 117 6 81 - 258 17 479 
 >=80 35 - 26 - 861 20 942 
 Total 503 43 220 2 1147 46 1961 
Total <15 8 11 47 - 64 2 132 
 15-<20 43 13 120 3 6 6 191 
 20-<40 418 74 380 30 120 24 1046 
 40-<60 674 34 67 42 60 8 885 
 60-<80 298 8 179 6 481 37 1009 
 >=80 89 1 87 - 1282 33 1492 
 Total 1530 139 856 81 1981 109 4696 

Table 2: Standardised version of Table 1 
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4.4 Table restructuring  

4.4.1 Short description 

Section 4.3 describes how risky situations can be discovered in frequency tables by 
temporarily looking at the table in standardised form. If risky cells are subsequently 
found, the table will have to be protected before it can be published. An initial 
option to make a frequency table with risky cells suitable for publication is to 
restructure the table. By combining categories, the content per cell is increased. This 
affects the distribution of the sensitive spanning variable(s) among the various 
categories. This method can also be used to increase the content per recognisable 
group. 

4.4.2 Applicability 

This method will generally lead to fewer risky cells occurring in the table. By 
combining rows and/or columns, cells are combined and the content per cell is 
increased. The distribution of the sensitive spanning variable(s) among the various 
categories is also affected as a result. 

There are no methodological conditions for using this method. However, externally 
imposed delivery obligations sometimes specify what detail level of a table must be 
published. This may be a Eurostat obligation, but Statistics Netherlands policy can 
also imply that a certain detail level of a table must be published. In these cases, the 
method can be used from a technical perspective, but this is prevented by external or 
other policy decisions. 

 

4.4.3 Detailed description 

The standardised version of the frequency table is used to determine whether a risky 
situation is present. The restructuring can take place in two ways:  

a. Restructuring the original table  

b. Restructuring the standardised version of the table. 

If option a is selected, the table will have to be examined again in the standardised 
form after restructuring to determine whether the disclosure control rules have been 
satisfied. The standardised form will also have to be used to determine which risky 
cells must be dealt with. In the case of option b, it is immediately clear which cells 
must be dealt with, but the restructuring will still have to be converted to the original 
table.  

4.4.4 Example 

Table 2 shows that the distribution of the respondents among the various categories 
of the sensitive variable does not satisfy the disclosure control rules in two rows. 
These rules require that a cell may not contain a concentration of nearly all the 
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respondents. The cell (Woman, 80+, Personal accident) contains 91% of the total 
group of women aged 80+ who died a non-natural death, and the cell (Woman, 40-
60, Suicide) also contains 91% of the total group of women between 40 and 60 years 
of age who died a non-natural death. 

Based on the original table, the choice could be made to not split the causes of death 
“Suicide” and “Personal accident” in terms of gender.  

Based on the standardised form, the choice could be made to condense the ages 
categories to “<15”, “15-<20”, “20-<60” and “>=60”. This creates a table where 
there is no longer a strongly concentrated distribution of recognisable groups in a 
single cell. See Table 3 for the associated table in its original form. 

Type of  Age 
non-natural death Gender Total <15 15-<20 20-<60 >=60 

Suicide Total 1530 8 43 1092 387 
 Man 1027 8 34 750 235 
 Woman 503 - 9 342 152 
Murder and 
manslaughter Total 141 11 13 108 9 
 Man 96 9 5 79 3 
 Woman 45 2 8 29 6 
Traffic accident Total 880 47 120 447 266 
 Man 636 23 87 367 159 
 Woman 244 24 33 80 107 
Workplace accident Total 81 - 3 72 6 
 Man 79 - 3 70 6 
 Woman 2 - - 2 - 
Personal accident Total 2013 64 6 180 1763 
 Man 834 32 2 156 644 
 Woman 1179 32 4 24 1119 
Other/unknown Total 110 2 6 32 70 
 Man 63 1 4 25 33 
 Woman 47 1 2 7 37 
Total Total 4755 132 191 1931 2501 
 Man 2735 73 135 1447 1080 
 Woman 2020 59 56 484 1421 

Table 3: Protected version of Table 1 

4.5 Suppression 

4.5.1 Short description 

A frequently used method to protect primary risky cells is to suppress (not publish) 
certain cells. The cell value is then simply replaced by an X. 

In a frequency table where the totals and subtotals are also provided, however, it is 
often not sufficient to suppress only the primary risky cells. After all, if a suppressed 
cell is the only suppressed cell in a row, the suppressed value is simple to calculate 
by subtracting the other cell values in that row from the associated marginal. 

To sufficiently protect primary risky cells, it is therefore also necessary to suppress 
other cells which, in themselves, are safe. This is called secondary suppression. It is 
not easy to perform this in such a way such that the primary risky cells are protected 
sufficiently, while also ensuring that not too much information is removed from the 
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table. Furthermore, account must also be taken of the fact that structural zero cells 
cannot be used as secondary suppressions: everyone knows that, by definition, these 
cells are empty. 

To prevent a situation where suppressed, primary risky cells can be calculated 
exactly, secondary suppressions are therefore necessary. However, what again plays 
a role here is that a “too accurate” estimation for a suppressed cell is not desirable. 
There is little difference between the statements “This suppressed cell actually has a 
value of 10000” and “This suppressed cell actually has a value of between 9998 and 
10002”. Given a suppression pattern, it is always4 possible to calculate an interval 
within which a suppressed cell must occur. The method of “Cell Suppression” must 
therefore produce a suppression pattern for which the intervals to be calculated are 
sufficiently large.  

Fischetti and Salazar (2000) have developed a method to solve the above problem in 
an optimal manner. Their method is, in theory, applicable to arbitrary, additive 
tables with non-negative contributors. In practice, however, their solution involves 
too much computing time if the tables become too large, either in size or 
complexity. This is why a number of suboptimal methods have been developed to 
find suitable suppression patterns for larger and/or more complex tables. 

For example, the “modular approach” (HiTaS) splits a hierarchical table into a large 
number of non-hierarchical subtables and applies the optimal method to each 
individual subtable. By correctly combining the results, a suboptimal solution can be 
obtained for the entire table, with a significantly shorter computing time. 

The “hypercube approach” can also protect large tables by protecting the subtables 
in a certain iterative way. The protection of each subtable also takes place 
suboptimally. Consequently, the approach is relatively fast, but, in general, more 
cells are suppressed than strictly necessary to obtain a protected table. 

4.5.2 Applicability 

Risky situations in frequency tables can be divided into two cases: 

a. The recognisable group is too small; 

b. The distribution of the recognisable group among the sensitive variable(s) is 
too concentrated in a single sensitive cell. 

To determine a suitable suppression pattern, it is necessary to know how one can 
comply with the disclosure control rules imposed. In many algorithms, so-called 
safety intervals are used for this purpose. These are the minimum intervals for 
primary suppressed cells that should arise from the suppression pattern. At present, 
contrary to the case of quantitative tables, no method is available to calculate the 
minimum intervals for primary risky cells in frequency tables. The method as 
described in Fischetti and Salazar (2000) is therefore not directly applicable as yet.  
                                                      
4 In the case that the table is composed of contributors within a certain range (for example, 
non-negative) and the marginals are also provided. 
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4.5.3 Detailed description 

If a row total in the standardised form of the table is too small (the recognisable 
group is too small), this cell will have to be suppressed. Of course, multiple cells 
will have to be suppressed to prevent the row total from being calculated. In general, 
this will mean that the total row will have to be suppressed, including a second 
possibly “safe” row. 

A second situation that may arise is a sufficiently large row total which, however, is 
too concentrated in a single sensitive category of the variable. In that case, the row 
total is, in principle, suitable for publishing. The cell associated with the category of 
the sensitive variable in which the respondents are concentrated can then be viewed 
as the primary cell to be suppressed. In a table with totals and subtotals, one must 
also look for secondary cells to be suppressed. In many algorithms, safety intervals 
are used for this purpose. These are the minimum intervals for primary suppressed 
cells that should follow from the suppression pattern. At present, contrary to the case 
for quantitative tables, no method is available to calculate minimum intervals for 
primary risky cells in frequency tables. The method as described in Fischetti and 
Salazar (2000) is therefore also not directly applicable as yet. 

An additional problem is formed by what is called “meaningful aggregates” in the 
disclosure control rules. If multiple cells in a row are suppressed, the total of these 
suppressed cells is actually published. If the suppressed cells form a meaningful 
aggregate, then the respondents may also not be too concentrated in that combined 
cell. Account should therefore be taken of this when determining secondary 
suppressions. It is not yet clear if the Fischetti and Salazar model (2000) is general 
enough to take this into account. 

4.5.4 Example 

Table 4 shows a suppression pattern in which it is assumed that the aggregate 
“Suicide” + “Personal accident” is not a “meaningful aggregate”. Both problematic 
cells are suppressed by placing Xs in the cells.  



 

43 

Type of  Age 
non-natural death Gender Total <15 15-<20 20-<40 40-<60 60-<80 >=80 

Suicide Total 1530 8 43 418 674 298 89 
 Man 1027 8 34 297 × 181 × 
 Woman 503 - 9 121 × 117 × 
Murder and 
manslaughter Total 141 11 13 74 34 8 1 
 Man 96 9 5 47 32 2 1 
 Woman 45 2 8 27 2 6 - 
Traffic accident Total 880 47 120 380 67 179 87 
 Man 636 23 87 315 52 98 61 
 Woman 244 24 33 65 15 81 26 
Workplace accident Total 81 - 3 30 42 6 - 
 Man 79 - 3 28 42 6 - 
 Woman 2 - - 2 - - - 
Personal accident Total 2013 64 6 120 60 481 1282 
 Man 834 32 2 100 × 223 × 
 Woman 1179 32 4 20 × 258 × 
Other/unknown Total 110 2 6 24 8 37 33 
 Man 63 1 4 18 7 20 13 
 Woman 47 1 2 6 1 17 20 
Total Total 4755 132 191 1046 885 1009 1492 
 Man 2735 73 135 805 642 530 550 
 Woman 2020 59 56 241 243 479 942 

Table 4: Suppression pattern for the protection of Table 1 

4.6 Additive rounding 

4.6.1 Short description 

In frequency tables, rounding is a rather natural method of disclosure control. First 
of all, the exact cell values are only known in a certain interval when rounding is 
used. The extent to which rounding is performed will, of course, have an impact on 
the size of the intervals. Second, an unrounded frequency table creates the 
impression of great precision: the counting has been performed down to the 
individual units. In the case of estimated frequencies, this is false precision. 
Rounding also cuts down on this false precision. 

If each cell is rounded independently, the additivity of the table will not necessarily 
be maintained. Of course, there is a simple way to guarantee the additivity: by 
rounding the cells in the interior of the table independently of one other and then 
recalculating the marginals. As a result, however, the marginals can deviate 
significantly from the rounded or unrounded original values. 

In additive rounding, the table is rounded such that the additivity is maintained and 
that the rounded table deviates from the original as little as possible. The size of the 
rounding base determines the extent to which the frequency table is protected: the 
larger the rounding base, the greater the protection will generally be. At present, no 
method is available to determine the correct rounding base. 

4.6.2 Applicability 

Additive rounding can be used for the statistical disclosure control of both 
quantitative tables and frequency tables. Often, a presentation argument will also 
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play a role: a large number of significant figures suggests a high degree of precision 
that is not always justified because of sampling errors and measurement errors. 
Rounding the table values reduces this false precision to a certain extent.  

4.6.3 Detailed description 

In additive rounding, the cell values in a table are rounded to multiples of a rounding 
base b, keeping the totals and subtotals in the table equal to the sum of the 
corresponding parts.  

Oftentimes, additive rounding is performed in a “zero restricted” manner. In other 
words, cell values that are already a multiple of the rounding base are not changed, 
while the other cell values are rounded to one of the adjacent multiples of that 
rounding base. The rounded values are selected such that the sum of the absolute 
deviations of the cell values in the rounded table with respect to the cell values in the 
original table is minimised, under the restriction that the rounded table remains 
additive. As a result, it is possible that cell values are not rounded to the closest 
multiple of the rounding base.  

In certain conditions, it is not possible to construct a rounded table under the 
scenario described above. In that case, the restriction that rounding is performed to 
one of the adjacent multiples of the rounding base is weakened by allowing a cell 
value to also be rounded to non-adjacent multiples of the rounding base. This 
weakening can be limited slightly by determining a maximum for the number of 
steps that may exist between the rounded value and the original value. 

In the case of “zero restricted” additive rounding using rounding base b > 0 for the 
non-negative number z = ub + r, where 0 ≤ r < b, rounding is performed on the 
number a, such that 

 ( ){ }bruuba b )(1, ),0(+∈  (4.6.1) 

where )(1 ),0( rb  is equal to 1 if r ∈ (0, b) and equal to 0 if r = 0.  

Therefore, in the case that r = 0, a is always rounded to ub and, in the case that r ∈ 
(0, b), a is always rounded to ub or to (u + 1)b. 

If, however, the restriction is weakened by a maximum of K > 0 steps further than 
the adjacent multiples of the rounding base, then rounding is performed on the 
number a, such that  

 ( ) ( ){ })(1,,|)(0 ),0( rKKjbjua b+−=+∨∈ K  (4.6.2) 

where ),max( yxyx =∨ . 

Multiple additive rounded versions may exist for a given table. These are all feasible 
tables. The table closest to the original table can subsequently be selected from the 
feasible tables. In τ-ARGUS (see Hundepool et al. 2007), the distance that is 
minimised is represented by 
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where N is the number of cells in the table (including all totals and subtotals), zi the 
cell values in the original table and ai the corresponding rounded cell values.  

Finding the optimal solution is a problem that requires intensive calculation (NP-
complete). For large tables, this can result in unacceptably long calculation times. 
Partitioning is built into τ-ARGUS for this reason: a large table can be split into a 
number of subtables that are rounded individually. After these subtables are 
rounded, they are combined, calculating (if necessary) the totals and subtotals in 
question from the rounded parts. 

4.6.4 Example 

Table 5 shows a rounded version of Table 1, where additive rounding is performed 
using rounding base 50. 

Type  Age 
non-natural death Gender Total <15 15-<20 20-<40 40-<60 60-<80 >=80 

Suicide Total 1550 0 50 400 700 300 100 
 Man 1050 0 50 300 450 200 50 
 Woman 500 - 0 100 250 100 50 
Murder and 
manslaughter Total 150 0 0 100 50 0 0 
 Man 100 0 0 50 50 0 0 
 Woman 50 0 0 50 0 0 - 
Traffic accident Total 850 50 150 350 50 200 50 
 Man 600 0 100 300 50 100 50 
 Woman 250 50 50 50 0 100 0 
Workplace accident Total 100 - 0 50 50 0 - 
 Man 100 - 0 50 50 0 - 
 Woman 0 - - 0 - - - 
Personal accident Total 2000 50 0 150 50 450 1300 
 Man 850 50 0 100 50 200 450 
 Woman 1150 0 0 50 0 250 850 
Other/unknown Total 100 0 0 0 0 50 50 
 Man 50 0 0 0 0 50 0 
 Woman 50 0 0 0 0 0 50 
Total Total 4750 100 200 1050 900 1000 1500 
 Man 2750 50 150 800 650 550 550 
 Woman 2000 50 50 250 250 450 950 

Table 5: Rounded version of Table 1, with rounding base 50. An “0” is a rounded 0, 
a“-” is an empty cell 
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5. Statistical Disclosure Control of Analysis Results 

5.1 General description and reading guide 

5.1.1 General description 

In addition to problems and methods for protecting microdata, quantitative tables 
and frequency tables described in the previous paragraphs, there is still a very broad, 
diverse group of statistical output. This concerns the results of various types of 
statistical analyses and model estimations. In principle, these results also run a risk 
of disclosing the data for individual respondents and must therefore be treated with 
care. The risk of disclosure is present particularly in the case of outliers. When 
determining whether these results are sufficiently safe, the underlying frequency 
tables are often examined. There is often a strong correlation between the analysis 
model and an underlying frequency table. In the Statistical Disclosure Control 
Handbook (Hundepool et al., 2006), a start has been made for the protection of 
analysis results. 

5.1.2 Reading guide 

The problem of determining whether the results of statistical analyses are 
sufficiently safe arises mainly when checking the output of OnSite working and 
Remote Access. This is where many statistical analyses are performed on 
unprotected data, while the users would very much like to use and publish the results 
of their research outside of Statistics Netherlands. Checking the output is a necessary 
part of this valued service from Statistics Netherlands and statistical offices in 
general. With respect to checking the output, it does not matter at all whether the 
output is obtained through OnSite or Remote Access. In both cases, the same 
analyses are performed on the same data files using the same tools (SPSS, SAS etc.). 

Because this problem does not only occur at Statistics Netherlands, but actually at 
every statistical bureau in Europe, it was decided to make this a subject of the 
Statistical Disclosure Control ESSnet project (2008-2009). The ESSnet is subsidised 
by Eurostat. Statistics Netherlands provided the project manager for this project. 
One of the tasks in the ESSnet project was to draw up guidelines for checking 
output. For this subject in the Methods Series, use is also made of these “Guidelines 
for Output Checking”, which can be found on the ESSnet website  
(http://neon.vb.cbs.nl/casc/ESSnet/guidelines_on_outputchecking.pdf). 

The subject is still under development. As such, the project group does not regard 
the current version as the final one, but instead as a very useable first version. The 
project group hopes that it will be able to continue its work in this area in a 
subsequent project.  
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Due to the diversity of the problem, both in terms of the number of possible analysis 
methods and the number of different statistical packages, each with their own forms 
of output, it is not possible to develop ready-made software for this purpose. 

5.2 Scope and relationship with other themes and subthemes 

This subtheme discusses methods that can be used to determine whether the results 
of statistical analyses are sufficiently safe. To a large extent, use is made of the 
results of a European project group that drew up these guidelines. These guidelines 
also discuss tables. However, because these subjects have already been covered in 
the previous chapters, these subjects from the guidelines are less relevant here. 

5.3 Disclosure control of analysis results 

The methods for the protection of analysis results tie in with these European 
guidelines. 

A number of considerations played a role when drawing up the guidelines for output 
checking. Of course, it is not possible to fully discuss all possible forms of output. 
The number of different methods available in SAS and SPSS is so large that it is 
impossible to assess all of these methods with respect to their possible disclosure 
risks. Just consider the size of the SPSS and SAS documentation. 

Another aspect that plays an important role in the guidelines is their feasibility in 
practice. In assessing output, we must take account of two possible errors: first, 
incorrectly approving risky results and, second, incorrectly holding back safe results. 

In the guidelines, two methods are provided for each subject. A “Rule of Thumb”, 
which primarily minimises the first error, and a “principles-based” rule that tries to 
minimise both errors. 

The idea behind this distinction is that much of the research output can easily be 
handled by the simple rule. If the output is not allowed due to the “Rule of Thumb”, 
and the researcher wants it approved anyway, extra work must be performed (also 
by the researcher) to demonstrate that the results are indeed safe. 

Here is a list of the types of output that are currently discussed in the guidelines: 

Frequency tables 
Magnitude tables 
Maxima, minima and percentiles (incl. median) 
Mode 
Means, indices, ratios, indicators 
Concentration ratios 
Higher moments of distributions (incl. variance, 
covariance, kurtosis, skewness) 

Descriptive  
statistics 

Graphs: pictorial representations of actual data 
Linear regression coefficients 
Non-linear regression coefficients 
Estimation residuals 
Summary and test statistics from estimates (R2, χ2 
etc.) 

Correlation and 
Regression  

Analysis 

Correlation coefficients 
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For the rest, please refer to the European Guidelines. 
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