CASC PROJECT

Computational Aspects of Statistical Confidentiality

April 2002

Median based aggregation operators for
prototype construction in ordinal scales

Josep Domingo-Ferrer
Dept. Computing Engineering and Maths — ETSE
Universitat Rovira | Virgili

Viceng Torra

Institut d’Investigacid en Intelligéncia Artificial — CISC
Campus Universtat Autbnoma de Barcelona

Deliverable No:1.1-D8-A



Median based aggregation operators for
prototype construction in ordinal scales

Josep Domingo-Ferrer
Dept. Computing Engineering and Maths - ETSE
Universitat Rovira i Virgili
Av Paisos Catalans 26
E-43007 Tarragona, Catalonia
jdomingo@etse.urv.es

Viceng Torra
Institut d’Investigacié en Intel-ligéncia Artificial - CSIC
Campus Universitat Autonoma de Barcelona
E-08193 Bellaterra, Catalonia
vtorra@iiia.csic.es

April 9, 2002

Abstract

This paper studies aggregation operators in ordinal scales for their
application to clustering (more specifically, to microaggregation for sta-
tistical disclosure risk). In particular, we consider these operators in the
process of prototype construction. The paper analyses main aggregation
operators for ordinal scales (plurality rule, medians, Sugeno integrals and
ordinal weighted means among others) and shows the difficulties for their
application in this particular setting. Then we propose two approaches to
solve the drawbacks and we study their properties. Special emphasis is
given to the study of monotonicity as the operator is proven to non sat-
isfy this property. Exhaustive empirical work shows that in most practical
situations this cannot be considered a problem.

Keywords: aggregation operators, median operators, OWA-
like operators, WOWA-like operators, monotonicity, clustering,
microaggregation, ordinal scales

1 Introduction

Information fusion techniques and aggregation operators are commonly applied
into several fields of human knowledge. As different fields imply different re-
quirements, a large number of aggregation operators exists nowadays. Also,



differences on the way knowledge is represented forced to the development of
tools to deal with the different knowledge representation formalisms. In par-
ticular, methods exist to deal with different kind of data. For example, there
are methods to fuse numerical information (i.e., data in numerical scale [9]),
categorical information (either ordinal [10] or nominal scales [15]), information
expressed by means of partitions (or, equivalently, equivalent relations [6]), den-
drograms (classification trees), preferences, orderings, images, ...

This work is devoted to the case of categorical information. The development
of operators of any kind for categorical information is always a difficult task due
to the limited number of commonly established operators over these scales. In
the particular case of aggregation operators, this is even more noticeable because
the corresponding operators over numerical scales are the means. These well-
known operators are based on product and addition, two operations that do not
apply to ordinal scales.

To overcome these difficulties, researchers have considered three main differ-
ent approaches for the case of ordinal scales. We detail them below considering
operators over the scale L = {ly,--- ,lg} where lg <p Iy <p --- <p lg. This
classification is based on [19].

1. Explicit quantitative or fuzzy scales: It is assumed a translation function
that assigns values in a different numerical scale for all values in the orig-
inal ordinal scale. The operators in the ordinal scale are defined from the
operators in the underlying scale. Operators defined for fuzzy sets using
the extensional principle belong to this class. In some cases, this explicit
scale is not given but inferred from additional knowledge about the ordinal
scale (e.g. one-to-many negation functions [17]). This is the case of the
aggregation operator in [19].

2. Implicit numerical scale: Operators assume an implicit numerical scale
underlying the ordinal scale where values are defined. Usually, each cate-
gory l; is dealt as the corresponding integer i. This is the case of Linguistic
OWA [11] and Linguistic WOWA [18].

3. Operating directly on qualitative scales: Operators stick to a purely ordinal
scale and are based only on operators of this scale. This is the case of the
median operator or the Sugeno integral [16]. These operators only use
the relation <; and minimum and mazimum that rely on <;. Other
operators in this class (e.g., the weighted mean defined in [7]) are based on
t-norms and t-conorms. Two operators that can be defined axiomatically
over ordinal scales.

The motivation of our work is the application of aggregation operators to
statistical disclosure risk. In particular, we consider the extension of existing
microaggregation procedures for numerical scales to ordinal scales (see [4] for a
state of the art description of microaggregation procedures). Microaggregation
techniques are applied to avoid disclosure of confidential data. To avoid the re-
identification of the individual in a data file, the information of these individuals



is distorted. Microaggregation consists on clustering the data in smalls clusters
(less than 10 individuals) and replacing the original values by the prototype (an
aggregated value) of the cluster. See [3] for a detailed analysis of the performance
of microaggregation with respect to other distorting techniques for microdata
protection.

In this setting, tipically, no much information is available on the underlying
semantics of categories in ordinal scales. This focus our work on the third class
of aggregation operators. This is the only case where no assumptions are made
on the existence of an underlying structure beneath the ordinal scale.

The structure of this work is as follows. We begin reviewing in Section
2 existing aggregation operators in ordinal scales. This section also reviews
different usages of weights in aggregation operators. Then, in Section 3, we
comment on the suitability of these operators for prototype building. Section
4 introduces new operators for solving the shortcommings of existing ones, and
analyzes their properties. The work finishes with some conclusions.

2 Aggregation operators in ordinal scales

In this section, we review some of the existing aggregation operators in ordinal
scales that operate directly on categorical values. We begin with the plurality
rule. Then we follow with the median and the Sugeno integral. The Sugeno
integral generalizes the median and other aggregation operators in categorical
scales. We finish outlining the ordinal weighted mean.

2.1 Plurality rule

The Plurality rule (or plurality function) corresponds to the selection of the
most frequent elements. In fact, the definition does not return a single element
but the set of elements that appear more often. Assuming that values to be
aggregated belong to the set L, the plurality rule can be formulated in the
following terms (this definition is based on [15]):

Definition 1 A mapping P : L — o(L) is a plurality function when P(ay,--- ,an)
is the set of all those y in L so that no z in L appears more often in (a1,--- ,an)
than y.

This definition shows that the procedure can be applied to elements in or-
dinal scales as well as to elements in nominal scales. So, L is not required to be
ordered.

Plurality rule can be extended to introduce weights to measure the reliability
of or the confidence in each value a;. This is formulated making explicit the in-
formation sources X = {z1, -+ ,zn} (here we assume that z; supplies the value
a;) and defining the weights as either a function w from X into a given domain
(e.g., [0,1]) or as a weighting vector w = (w1, --- ,wn). Both approaches are
equivalent as w; = w(z;). In the definition of the weighted plurality function it



is also considered a function f to relate each information source with the value
it supplies: f(z;) = a;.

With all this information, the weighted plurality rule selects the values that
accumulate more weights. This is formalized below by means of a function acc
that when applied to a € L returns the accumulation of the weights of all the
sources z; that supply the value a.

Definition 2 Let w be a weighting vector of dimension N, then a mapping
WP, : LN — (L) is a weighted plurality function when Py(as,---,an) is
the set of all those y in L so that no z in L, acc(z) > acc(y) where acc(a) =
Zf(zj):aw(xj)

In this definition, the range of the weights is restricted to be in such a way
that addition is allowed. Therefore, real numbers and integer numbers are both
appropriate for weighting vectors. Moreover, ordinal scales where addition-like
operators are defined are also appropriate. This is the case of ordinal scales with
t-conorms (see [14] for a detailed analysis of t-norms and t-conorms in ordinal
scales). We would like to underline that there is no need to impose that the
domain of the weights are equal to the one of the data.

2.2 Median

The median procedure is to select the element that occupies the central position
of a sequence of elements when they are ordered according to their value. This
can be formaly described for numerical data as follows:

Definition 3 A mapping M: RN — R is a median of dimension N if:

Ao (N/2)FTo(N/2+1) .
M(as, - ,an) = IR SRR when Nz.s even
Qy(N41) when Nis odd
2

where {o(1),...,0(N)} is a permutation of {1,...,N} such that a,;_1) >
ag(i) for alli = {2,..., N} (i.e. a,(; is the i-th largest element in the collection
Apy-eny aN).

When dealing with categorical data (this is, M is a function M : LN — L),
one of the following expressions will be used for the case of N being even:

Qo(| ML) Go(12417)

They correspond, respectively, to aqs(n/2) and to ay(n/241)-

This definition can also be extended to include weighting vectors. In this
case, the central element is a relative position according to the weights. As
in the case of the Plurality rule, we formalize this definition considering the
set of sources X, the function f that assigns the values to the sources and the
weighting vector w.



Definition 4 Let w be a weighting vector of dimension N, then a mapping
WMy, : LN — L is a Weighted Median of dimension N if:

WMw(a1,--- ,an) = a if and only if acc(a) > 0.5 > acc(b)

where acc is a function over the values in {ai,...,an} defined as acc(a) =
> f(z)<a W(;) and where b is the largest element in {ay,...,an} that is smaller

than a. This is, b = max{z|z € {a1,...,an},z < a}.

In this case, the most natural weighting vector is one defined by positive
real numbers that add to one. This is, > w; = 1 and w; € (0,1] (note that the
definition requires w; # 0). However, other possibilities are also possible. In
particular, natural numbers can be considered. The weighted median for weights
in N can easily be translated into the previous one through normalization. This
is, defining a new weighting vector w; = w;/ }_; w;. Moreover, an ordinal scale
O with multi-valued logic operators can also be used. In this case, besides of a
t-conorm for addition, an involutive negation is also required (a function n from
O to O). In such case, instead of selecting a value on the basis of the value 0.5
we would use the element z € O such that its negation is also z (i.e., z = n(z)).

2.2.1 Order statistics

There exists a set of aggregation operators that are similar to the median.
They are the so-called order statistics (we denote this family of functions by
0S). Order statistics permit the selection of the i-th greatest value. To do
so, the operator requires a preliminary ordering process as in the case of the
median and then an integer value ¢ in the range [1, N] to select the i-th element.
Alternatively, a definition can be given when instead of an integer value, a real
number ¢ in the unit interval is given. Le., selecting the element that occupies
the a-100 percentage of the domain. As the operator only relies on the ordering,
it can be applied to ordinal scales.

When the selection of an element is based on a real number (in the unit
interval) weights can be included in the definition. This corresponds to replace
0.5 by « in Definition 4. We denote by WOS the corresponding weighted order
statistics. It is clear that the approach is similar to the case of the weights in the
median. As before, weights correspond to the importance of the sources and can
either be real or natural numbers. In the latter case, normalization is required.
Ordinal scales can also be used. In this case, the parameter ¢ should be a value
in the same ordinal scale (instead of a real number in the unit interval).

2.3 Sugeno integral

An alternative aggregation operator that also permits the inclusion of weights
for the information sources is the Sugeno integral [16] (see [13] for a detailed
account of its properties). However, this integral does not consider weighting
vectors but the so-called fuzzy measures. If X = {z;,---,zn} is the set of



information sources, a fuzzy measure is a set function that given a subset A of
X returns a measure of its importance.

Fuzzy measures satisfy three axioms: (i) the measure of the empty set is
zero (when no source is considered, the importance is zero), (ii) the measure
of the whole set is 1 (when all the sources are considered, the importance is
maximal and settled to one); and (iii) the larger the set of sources, the larger
its importance. The first two conditions correspond to boundary conditions and
the third one corresponds to monotonicity. Formal definition of these conditions
are given below:

Definition 5 A fuzzy measure p on a set X is a set function p : p(X) — [0,1]
satisfying the following axioms:

(i) w(®) =0, u(X) =1 (boundary conditions)
(i) A C B implies u(A) < u(B) (monotonicity)

This definition is given in the interval [0, 1], but the same definition applies to
any ordinal scale L = {lg,- -+ ,Ig}. In this latter case, the measure is a function
from p(X) into L and the boundary conditions are u(@) = lo and u(X) = Ig.

The Sugeno integral [16] is defined as the integral of a function f (the one
that establishes the value f(z;) for the information source z;) with respect to a
fuzzy measure. In a numerical scale, the definition is as follows:

Definition 6 Let p be a fuzzy measure on X, then, the Sugeno integral (SI for
short) of a function f : X — [0,1] with respect to u is defined by:

/ = g min( ) (Ao (1)

where f(z5(;)) indicates that the indices have been permuted so that0 < f(z51)) <
- < f@gny) <1, Agy = {Zs(i)s - Ts(v) } and f(z50)) = 0.

When the values belong to an ordinal scale, an analogous definition applied.
In this latter case it is important to emphasize that both the function f and the
fuzzy measure p are defined as mappings into the same ordinal scale L otherwise
the minimum and the maximum operators are not meaningful.

The Sugeno integral is a very general operator as it generalizes several other
aggregation operators. In particular, it generalizes the weighted minimum and
the weighted maximum (see [5] for a detailed description of these operators and
of their properties). They are aggregation operators to be used to model logical
conjunction and disjunction when the sources are weighted. We review below
the weighted maximum. The weighted minimum has a similar definition. Both
operators use weighting vectors for expressing importance or reliability. Here
the weights map each source into a value in an ordinal scale. Note that, as
before, the scale for the values to be aggregated should be the same that the
scale for the weights. This is so because the minimum combines the values of
the weighting vector and the values a;.



Definition 7 A wvector v = (vi...vn) is a possibilistic weighting vector of di-
mension N if and only if v; € L and max; v; = lg.

Definition 8 Let u be a weighting vector of dimension N, then a mapping
WMaz: LV — L is a weighted maximum of dimension N if W M azy(ay, ...,an) =
max; min(u;, a;).

2.4 Ordinal weighted mean

In this section, we give an overview of ordinal weighted mean without going into
details. See [7] for detailed definitions and properties and [8] for an extension
of the approach to Choquet integrals.

The ordinal weighted mean (OW M for short) is a different approach to
extend the weighted mean to ordinal scales. The general idea of the operator is
to translate addition and product in the weighted mean by similar operations
in the ordinal scale. Two operations of multi-valued logics are selected for this
purpose: t-norms and t-conorms.

T-conorms are addition-like operators that satisfy monotonicity, commuta-
tivity, associativity and have as neutral element the value 0 (lp in the ordinal
scale L = {lg,---,Ig}). T-norms are product-like operators that satisfy the
same properties except for the neutral element that in this case is 1 (I when
defined in the ordinal scales L).

Ordinal weighted mean assumes that weights are natural numbers. Then,
the multiplication of a weight by a value corresponds to multiple additions of the
corresponding value. Here addition is achieved through the t-conorm. As the
ordinal scale is usually not enough to accumulate all the values to be aggregated,
a new scale is introduced that extends the original scale. This new scale is the
product of the subset of natural numbers {1,---, N} (where N is the number
of values to be aggregated) and the original scale. Once the accumulated value
is obtained in this new scale, division by the accumulation of the weights leads
to the final aggregated value.

Extensions of this operator exist that consider other scales than natural
numbers for the weights. Also, the same approach was applied to extend the
Choquet integral [2] to ordinal scales. This is the so-called Ordinal Choquet in-
tegral (OCT for short). Choquet integral is the natural extension of the weighted
mean to the case of considering numerical fuzzy measures. In some way, Sugeno
integrals are the ordinal counterpart of Choquet integrals.

2.5 Considering weights in aggregation operators

Aggregation operators use parameters for expressing additional knowledge about
the values, the sources and its current application. Some of the common uses
of the parameters are the following ones:

Expressing importances of individual information sources: Thisisthe
typical case of weighting vectors in weighted means and similar aggrega-
tion operators (weighted maximum, weighted minimum, plurality rule,



median). We associate to each source a weight in a given scale. The
larger the weight, the more important is the source in determining the
aggregated value.

Expressing importances of values: This is the approach considered in the
OWA operator (operator defined by Yager in [20] — see also [21] about
including other types of weights). Weights do not measure the importance
of a source but of the values. For instance, it is possible to give more
importance to small values than to larger ones. This would be the case if
a robot fuses estimated distance to a nearby object: it is more important to
consider small values than larger ones to avoid collisions. OWA operators
and related ones (e.g., Choquet integral that generalizes OWA operators)
can be used for this purpose.

Expressing importances of sets of information sources: Thisis the case
of the Sugeno integral and other similar operators (the Choquet integral
and the Fuzzy t-integral). These operators do not only allow to express
the importance of a particular information source, but also the impor-
tance of a set of sources. Fuzzy measures can be used to represent this
information. In the numerical case, it can be proven that fuzzy measures
can be used to represent both the importances of the individuals and the
importance of the values.

|P WP M WM oS wWoS SI WMax OWM ocCI
1) |v w N, ifiel wifiel p w w
(0,8,9,n) (0,8,®,n)
@0 N 0 N 1 N+1  2°¥ N N 2N
3) RN RN RN I L N N
(0, ®) (0, &,n) (0,®,n) (0, ®) 0, ®)
@ X v X v X v 7V v
G| X X X X X X J X X V
6 [ X X X X X X X X V Y

Table 1: Characteristics of ordinal aggregation operators: / means that the
characteristic is always fullfilled; X that is never possible; other values cor-
respond to particular characteristics. Here, I stands for the unit interval, O
corresponds to an arbitrary ordinal scale, (O,®) to an ordinal scale with a t-
conorm, (O, ®,n) an arbitrary ordinal scale with a t-conorm and a negation and
(O, ®,®,n) an ordinal scale with a t-conorm, a t-norm and a negation.

2.6 Summary of aggregation operators in ordinal scales

Table 2.5 gives an overview of the main characteristics of the aggregation oper-
ators reviewed so far.



The first row is whether the function can be used for an arbitrary number
of values to be aggregated and the parameters required, if any. In fact, all
functions can be applied to an arbitrary number of parameters easily. In the
case of the order statistics, it is appropriate that the parameter used is a real
number in the unit interval in order that the selection of the i-th element do
not change the meaning when additional elements are considered. With a real
number, the parameter corresponds to the selection of the element that occupies
the i% percent.

The second row is the number of parameters required when the number of
values to be aggregated is N.

The third row is the range of the weights (if any). In this row, O corresponds
to an arbitrary ordinal scale while L is used when the scale should be the same
that the one for the values to be aggregated. @, ® and n stand for t-conorm,
t-norm and negation functions over O. R and N stand, as usual for real and
natural numbers.

The fourth row is whether the aggregation procedure allows the weighting of
the sources. The fifth row is for the weighting of the values. Positive marks are
given for the Sugeno and the Choquet integral to both kind of weights as fuzzy
measures can be defined to express this information. However, for measures
in ordinal scales it is difficult to model at the same time the weighting of the
sources and the weighting of the elements. This is not the case in the numerical
setting when the measure can be built from two weighting vectors one modeling
each alternative (as for the WOWA in [18]).

The last row is about the possibility of obtaining a value that is not present
in the original set of values to be aggregated.

3 Aggregation procedures for prototype construc-
tion

In this Section, we review the difficulties of using the aggregation procedures
reviewed so far when applied to building prototypes within clustering meth-
ods. Although our point of view is biased to clustering methods for microdata
protection, the analysis is appliable to most clustering problems.

Clustering methods are applied to multidimensional data to build a set of
clusters in which similar elements are put together and dissimilar elements are
left into different classes. One of the open problems in clustering is how to deal
with categorical data. In fact, several difficulties arise in this case: computation
of similarities between categories, combination of similarities when each indi-
vidual is represented in terms of different variables evaluated in different scales,
prototype calculation for each cluster. In this work we are interested in the
lattest problem: the computation of the cluster prototype.

The computation of the prototype is usually achieved in numerical scales
using some kind of aggregation procedure. Usually an arithmetic mean although
some other aggregation operators are conceivable. In particular, the weighted



mean (e.g. to give different importance to different individuals in the cluster
[12]) or the OWA (e.g. to give more importance to central elements than to
elements with large or small values [22]).

In the case of categorical data, the methods described in Section 2 are appli-
able. Now we consider in detail the applicability of each method for prototype
calculation:

Plurality rule: The application of the majority rule is straightforward. How-
ever, some inconveniences can be distinguished. The first one is that the
majority rule returns a set of the most frequent values. Therefore, when
the prototype is a single value, a selection procedure has to be considered
to select one of the values. Another drawback is that the function does
not allow for compensation. We understand here for compensation the
fact that when the data to be fused contains two values a; and aj, the
output can be a value in between, say ay, regardless a; € {a1, - ,an}
or not. In other words, an aggregation function C is not compensative
if for all a;,a; € {a1,--- ,an}, the aggregated value is always one of the
original ones: C(ay,--- ,an) € {a1,--- ,an} for all a; € L

Therefore, when large and small values but not medium ones are fused,
the final value will be either a large or a small one. Note that in the
numerical case, the mean & = ), z;/N minimizes Y (2z; — Z)?, and the
selection of a large value (or a small one) instead of Z would give a larger
difference.

An additional difficulty of this lack of compensation is that when the
number of values to aggregate is small, small variations on the elements
can provoke large modifications of the output. E.g., the aggregation of
the values lg,lo,!3,14 is lp and the aggregation of the values ly,lo,I3,14 is
l4. Thus, a small modification of the inputs (a single value) results into a
large variation of the output (from Iy to ly).

Weighted median has an additional difficulty: it is not always possible
to have available the required weighting vector. This is so, because in
prototype selection it would be required a weight for each individual. In
fact, there are some applications in which this information is available
(e.g., [12]). However, this is not the general case, because it is usually
assumed that the representativeness of all elements is the same (for all the
application domain).

Special difficulties arise when weights are not numerical but defined in
ordinal scales. This is so, because not all the clusters have the same
number of elements and therefore, normalization is required in each cluster
(otherwise with a few elements we can get that all elements a; have acc(a;)
equal to 1, and, therefore, selection is not possible). Also, selection of the
appropriate t-conorm is not an easy task, specially for non-experienced
users.

Also related to weights, no weights for the values are considered in the
function.

10



Median: The application of the median operator for prototype selection is
straightforward. However, it presents some of the drawbacks of the plu-
rality rule: The median always returns one of the values to be aggregated
(e.g., the median of ly,In_1,In is Ixy—1 while a straight average of the in-
dices gives l(2a7-1)/3); it does not allow to consider weights for the values;
and the same comments about the weighting vector given for the plurality
rule apply to this case. Order statistics have similar properties although
in this case, the weight allows the selection of other values than the central
one.

Sugeno integral: The main difficulty for the application of the Sugeno inte-
gral in the setting of prototype selection is the definition of the correspond-
ing fuzzy measure. According to the definition of the integral, the fuzzy
measure has to be defined into L as the values a; are. Several difficul-
ties apply in this case: defining measures for all possible clusters requires
a huge number of fuzzy measures (only parameterized families of fuzzy
measures can be used - and parameterization is difficult in ordinal scales);
when several variables are used in the clustering process, fuzzy measures
have to be defined for each variable (the set L usually changes for each
variable and the fuzzy measure has to be defined on the same scale that
the variable) and this increases the complexity of this definition; for each
variable and each set of N sources, 2V values are required.

Another drawback of the Sugeno integral is that it does not allow for
compensation. In fact, this statement has to be tinged because the final
value can be different from the original ones. This is possible because the
final value can be one of the ones used by the fuzzy measure. This can
cause some sort of compensation.

Some of these difficulties also apply to Weighted maximum.

Ordinal weighted mean: The main difficulty for using the ordinal weighted
mean is the requirement of a t-norm and t-conorm for the domains of the
variables. This means having one pair (t-norm,t-conorm) for each of the
variables.

As a conclusion, we can say that the two most relevant difficulties for apply-
ing the above mentioned aggregation operators is that most operators do not
allow for compensation and that also most of them do not allow for weighting
the sources.

Detailed analysis of the methods shows that the most relevant operation
for the problem of prototype selection is the median. This is, in fact, the
operator usually considered as the ordinal counterpart of the weighted mean.
Sugeno integral and ordinal weighted mean are specially difficult to apply due,
respectively, to the need of fuzzy measures and definitions of t-norms and t-
conorms.

In the next section we introduce WOW-operators for including compensation
and weighting for the sources to categorical aggregation operators. Then we
particularize the approach to the case of the median.

11



4 Weighting of values and compensation

The inclusion of the weights for the values is based on the Weighted OWA
(WOWA) operator defined in [17]. This operator is a generalization of both the
weighted mean (WM) and the Ordered Weighted Averaging (OWA) operator
(defined by Yager in [20]) allowing users to have in a single operator the param-
eters of both operators. In fact, both WM and OWA have parameters of the
same form (weighting vectors: positive weights that add to one). However, in
spite of having the same form, the parameters have different meaning. Let us
recall both operators:

Definition 9 A vector v = (v1...uN) is a weighting vector of dimension N if
and only if v; € [0,1] and Y, v; = 1.

Definition 10 Let p be a weighting vector of dimension N, then a mapping
WM: RN — R is a weighted mean of dimension N if WMp(ay,...,an) =

Ei Dia;.

Definition 11 Let w be a weighting vector of dimension N, then a mapping
OWA: RN — R is an Ordered Weighting Averaging (OWA) operator of dimen-
sion N if

N
OW Aw(ay,...,an) = Z Wiy ()
i=1

where {o(1),...,0(N)} is a permutation of {1,..., N} such that az;;_1) > aq ;)
for all i = {2,..,N} (i.e. a, is the i-th largest element in the collection
A1y eeny aN).

Similarities and differences between both operators can be underlined as
follows:

e The weighted mean is a linear combination of weights and values where the
weights are linked to the values we aggregate. This is usually understood
as the importance or reliability of the information sources. The larger
a weight is, the more influence has the corresponding value to the final
output. The smaller a weight, the lesser influence has the correponding
value.

e The OWA operator is also a linear combination of weights and values.
However, in this operator weights are not linked to the values them-
selves but on their relative position. Note that any permutation 7 of
the values to be aggregated lead to the same result: OW Ap(aq,...,an) =
OWAP (a,r(l), ceny a,r(N)).

The WOWA operator that generalizes both operators is defined as follows:

12



Definition 12 Let p and w be two weighting vectors of dimension N, then
a mapping WOWA: RV — R is a Weighted Ordered Weighted Averaging
(WOWA) operator of dimension N if

WOW Ap w(a,....,an) = Z Wilg ()

where o is defined as in the case of the OWA (i.e., ay(; is the i-th largest
element in the collection ay,...,an ), and the weight w; is defined as:

w; = 'U)*(Zpd(j)) - W*(Z Po(j))

i<i j<i

with w* being a monotonic increasing function that interpolates the points (i/N, ", ; w;)
together with the point (0,0). The function w* is required to be a straight line
when the points can be interpolated in this way.

In this definition, the weighting vector p corresponds to the weighting vector
of the weighted mean and w corresponds to the weighting vector of the OWA
operator. Then, w is a new weighting vector that considers the interactions
between p and w.

The function w* built above from the vector w can be understood as a fuzzy
quantifier (a non-decreasing fuzzy quantifier) while the weights p can be seen
as a probability distribution. A non-decreasing fuzzy quantifier is a monotonic
function @ (i.e., Q(a) > Q(b) for all a > b) such that Q(0) =0 and Q(1) =1.

In the definitions given above, weighting vectors are presented in conjunc-
tion with the definition of the operator. However, these vectors and their trans-
formation can be established without the corresponding operator and used in
other families of operators. This is defined below using the non-decreasing fuzzy
quantifier @ (@ can be interpolated from w when required as above).

Definition 13 Let (a;,pi)i=1,v be a pair defined by a value and the importance
of a; expressed in a given domain D C RT, and let Q be a fuzzy non-decreasing
fuzzy quantifier. Then, the WOW-weighting vector w = (w1, - ,wn) for (a,p)
and @Q is defined as follows:

wi = 2 j<iPali) _ 2 j<iPo(s)
;= Q=12 bl ASACTA
EjeL Do (i) ZjeL Do (i)

where o is a permutation as above such that a,(;—1) > ag(;)-

This definition permits to include the weighting of the sources to aggregation
operators for categorical data. The following definition exploits this fact to
define a WOW — C operator from an operator C.

Definition 14 Let X = {z1,...,zx} be a set of information sources, let a;
be the value supplied by the source x;, let C be an aggregation operator with
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parameter p : X — D and let Q) be a non-decreasing fuzzy quantifier Q. Then,
the WOW — C operator is defined as follows:

WOW -Gy qg(ar,---,an) = Cy(ar,--- ;an)

where w is the WOW-weighting vector of (a;, p;i)i=1,n and Q following Definition
13.

The second aspect to be introduced in the aggregation process is compen-
sation. This is achieved, following [1], making data values convez. Recall that
compensation is that values ar ¢ {a1,---,an} such that min(a;,a;) < ar <
maz(a;,a;) for a;,a; € {a1,--- ,an} can be selected. Our approach to allow
compensation is to redefine the function acc in Definition 4 so that acc(ay) # 0.
In this way, ay can be selected by the aggregation function.

Definition 15 Let p : X — D C R be a weighting vector, then a mapping
CWMy : LN — L is a Convex Weighted Median of dimension N if:

CW Mp(a1,- - ,an) = a if and only if acc'"'(a) > 0.5 > acc” (b)

where acc"'(a) = Y-, <, acc’(b), acc’(a) = acc'(a)/ Y, acc'(b), acc'(a) =
min(maxp<, acc(b), maxy>, acc(b)), acc(a) = > f(z)=a P(T;) and where b is the
element next to b in L. This is, b= max{z|z € L,z < a}.

Now we show the application of these two procedures (the one for weighting
the values and the one for allowing compensation) to the median and to the
plurality rule. This application leads to the CWOW-plurality rule.

Definition 16 Let p : X — D C R be a weighting vector, let Q be a non-
decreasing fuzzy quantifier, then a mapping CWOW — Mediany : IN 5 Lisa
Convex WOW-Median of dimension N if:

CW Mw(a1, -+ ,an) = a if and only if acc™(a) > 0.5 > acc™ (b)

where acc®(a) = Y, ., acc" (b), acc is the WOW-weighting vector of (L, acc'")
and Q, acc”(a) = acc'(a)] ey, acc'(b), acc' (a) = min(maxy<, acc(b), maxp>, acc(b)),
acc(a) = Y j(p,)=q P(;) and where b is the element next to b in L. This is,
b =max{z|z € L,z < a}.

Definition 17 Let w be a weighting vector, and Q) a non-decreasing fuzzy quan-
tifier, then a mapping WP, : LV — p(L) is a CWOW-plurality rule when
Py(a1,--- ,an) is the set of all those y in L so that no z in L, acc"(z) >
acc” (y) where acc”(a) is the WOW-weighting vector of (L,acc') and Q, acc'(a)
= min(maxy<, acc(b), maxy>, acc(b)) and acc(a) = Ef(wj):a w(zx;)
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Table 2: Information sources and values to be aggregated

| lo ll l2 l3 l4 15 le | CWOW-Med |
acc 2 3 1 0 2 1 0 l4
acc’ 2 3 2 2 2 1 0 lo
acc” 2/12  8/12  2/12  2/12  2/12  1/12 0 Iy
acc(a=1/8) | 0.7993 0.0970 0.0385 0.0298 0.0245 0.0108 0.0 lo
acc"(a=1/4) | 0.6389 0.1644 0.0705 0.0566 0.0478 0.0215 0.0 lo
acc"(a=1/2) | 0.4082 0.2872 0.1182 0.1022 0.0914 0.0425 0.0 I
acc"'(a=1) 0.1666 0.25 0.1666 0.1666 0.1666 0.0833 0.0 ls
acc"'(a = 2) 0.0277 0.1458 0.1666 0.2222 0.2777 0.1597 0.0 I3
acc"'(a = 4) 0.0007 0.0293 0.0856 0.2006 0.3896 0.2939 0.0 ly
acc"'(a = 8) 0.0000 0.0009 0.0124 0.0867 0.3984 0.5014 0.0 l5

Table 3: The CWOW — median for o € {1/8,1/4,1/2,1,2,4,8}

4.1 CWOW-Median

In this section, we study the CWOW-Median procedure defined in Definition 16.
We begin giving an example that shows the suitability of the approach for
obtaining, with appropriate parameterizations, values between the minimum
and the maximum of the value to be aggregated. Then we analyze the properties
of the operator focusing in the monotonicity condition.

Example 1 Let X = {z1,%2,s3,%4,5,26,%7,Ls,T9} be a set of information
sources, let f(z;) = a; be defined as in Table 2 (here L = {lo,l1,12,13,14,15,1l6}),
and let p(x;) = 1 for all x;, then, the CWOW — Median for Q(z) = z*
for o € {1/8,1/4,1/2,1,2,4,8} is given in Table 3. This table includes the
computed vectors acc, acc', acc” that are common for all CWOW — Median
operators and then the vector acc” for each considered . The last row of the
column describes the aggregated values CWOW — Median for each of the values
and also the median for the original data (first row — acc row) and for the convex
weighted median (second and third row, denoted by acc' and acc' rows).

This example shows that the CWOW — Median permits to overcome the
compensation inconvenience faced by the original median operator. Note that
it is possible to obtain I3 as the output when a = 2 while I3 was not one of the
values to be aggregated. It can also be observed that the operator, by means
of the a parameter, permits to obtain values between the minimum and the
maximum of the a;. In our case, the function moves from [y to l5. Moreover,
the function cannot result into values larger than the maximum of the a; or
smaller than the minimum of the a;. This fact also implies that the operator
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satisfies unanimity (if all sources agree in a value /;, the outcome is this very
value ;)

Proposition 1 CWOW — Median is an aggregation operator satisfying:
1. min(ay, - ,an) < CWOW — Median(ay,--- ,ay) < max(ag,--- ,an)
2. Unanimity CWOW — Median(l,1,--- ,1) =1 for alll € L

Nevertheless, this operator presents a drawback. The following proposition
establishes this negative property.

Proposition 2 The CWOW — Median does not satisfy monotonicity. This is,
it does not hold

CWOW — Median(ay,- -+ ,an) < CWOW — Median(al,--- ,a})
for some a; < a wherei € {1,--- ,N}

Non-monotonicity is a consequence of the fact of making the function acc
convex. Augmenting the values of acc for all the elements below the previ-
ous median value can violate monotonicity. This is illustrated in the following
example:

Example 2 Let us consider 16 information sources X = {x1,22, - ,Z16} giv-
ing information over a set L of 11 ordered categories L = {lo,l1,--- ,l10}. The
information supplied by the sources is as follows: 6 of the sources supply the
value ly and the other 10 supply the values l1,ls,--- ,l19. This is,

a = (lo,lo,10,10,10,10,11,12,+ - ,19,110)

To aggregate this values, the CWOW — Median is used. The corresponding
acc function is given in the first row of Table 4. The application of the simple
median to these values is given in the last column of the first row. The second
and the third row of this table gives the acc' and acc” functions. This is, the
convez function and the normalized function (the one that add to one). The last
column of these rows shows the value of the CWOW — Median: ls.

Let us now consider that one of the sources that supplied the category lo (say
z1) changes the value by ls. The corresponding a' vector is now:

a' = (Ia, 1o, 1o, 10, 1o, Lo, Iu,y 1o,y - -+ 4 19, Lig)

Note that this vector is momnotonic increasing in relation to the previous
vector a because, a} > a; for alli € {1,--- ,N}.

The corresponding acc function is given in the fourth row of Table 4. The last
column of this row gives the Median of the values. The median is a monotonic
function and it can be seen that in this case the final value is not modified by
the change of ly by ly. In the last two columns of this table, functions acc'
and acc” are displayed. The last column in the rows give the result for the
CWOW — Median function: ly.
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The example shows that monotonicity is not sastisfied because changing the
value a; = lp by a} = lo (and keeping all the others a} = a;), the outcome of
the function is /5 instead of I3 and thus violates the equation:

CWOW — Median(ay, -+ ,an) < CWOW — Median(a),--- ,aly)

The violation of the monotonicity condition is due to several factors (see
Table 4): (i) the replacement of the value Iy by two values instead of one in
acc', and thus incrementing the number of total values in the median from 16
to 17 (see denominators in rows acc’); (ii) the two additional values are lesser
than I3 and thus decrements the final outcome (note different values in columns
Iy and I in rows acc’). Both factors are caused by the process of making acc’
a convex function (in fact, incrementing the number of values /; smaller than
I3). Note that for the original Median function, the final aggregated value is not
modified (the function is indeed monotonic).

acc 6 1 1 1 1 1 1 1 1 1 1 I3
acc’ 6 1 1 1 1 1 1 1 1 1 1 I3
acc” | 6/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 I3
acc 5 1 2 1 1 1 1 1 1 1 1 I3
acc’ 5 2 2 1 1 1 1 1 1 1 1 la
acc” | 5/17 2/17 2/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 ls

Table 4: Example of non-monotonicity for the CWOW — Median

Nevertheless, although these examples do not satisfy the monotonicity con-
dition, it is clear that variations on the result are small (one label is changed by
a contiguous one) and can be accepted from the point of view that we are using
ordinal scales with no established semantics. In fact, the violation of the mono-
tonicity condition is found when for a category I; the acc”’ function (acc (1;))
is near the cutting point 0.5. Note that acc”(l2) = 0.5 and acc”'(I3) = 0.5625
for the a vector, and that acc” (I2) = 0.5294118 for a’. On the light of ordinal
scales as scales with some uncertainty (e.g. imprecision or fuzzy terms), we can
understand non-monotonicity results as errors in the limits of the meaning of
the category.

It has to be said that in general, it is possible to find examples of non-
monotonicity in which replacing a value [, by a larger value [, results in a large
change of the outcome. However, this requires a set L with a large number
of categories and a large set of sources, a situation that is not common when
dealing with ordinal scales (specially, the case of having a large set of categories).
This is illustrated in the following example:

Example 3 Let us consider a set X consisting on 1006 information sources,
each supplying o value in the ordinal scale L = {lg,l1,l2,--- ,l1000}. Let z;
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supply the value I; for i = 1,--- ,1000 and let x1001," - - ,Z1006 Supply the value
lo. Then, the CWOW — Median of these values is ls9s.

Let us consider now that 1001 replaces the value ly by the value lo59, then,
the CWOW — Median is l373.

As ls50 > lg, but l373 < l498, the monotonicity condition is not satisfied. In
this case, the number of categories between the original value and the new one
is large but the number of categories in the set L is also very large.

To have a better understanding of the situations in which the CWOW —
Median violates monotonicity (this understanding is required to apply the ag-
gregation operator properly), we have studied in detail different situations and
analyzed them to know whether the operator satisfies monotonicity or not.

We have considered two different scenarios and randomly generated several
instantiations. In each instantiation, two monotonic vectors a* = (al,--- ,ak)
and a® = (ai,--- ,a%) (i-e., aj < a?) were generated and the CWOW — Median
was applied to them. Monotonicity was then checked.

In both scenarios, we consider an ordinal scale consisting on [ categories
(I = R+ 1 using the notation L = {lo,l1,--- ,lg} used so far), N information
sources and that the difference between vectors a' and a? is that K-information
sources have changed their value in a' by a larger one in a? (this is, |[{a;|a} #
a?}| = K). For each scenario, m random instantiations have been considered.

The two scenarios studied are the following ones:

1. All the sources changing a value in a! to another one in a? had the same
value in a! and change to the same value in a?. This is, for all i such that
a} # a3, a} = a and a7 = (3. In this case, if for a given parameterization
K, the number of categories aj = «a is K' wit K' less than K, only K'
sources will change their value.

2. Sources that change their values can have different values both in a' and
in a?.
According to all this, for each of the scenarios, an example is defined accord-

ing to four parameters (I, N, K, m). For evaluating the aggregation function, we
have considered the following parameters for the two scenarios:

e The number of categories: I = 2,3,4,5,6,7,8,9,10, 20, 30, 50,100
e The number of sources: N = 5,10, 15, 20, 25, 30, 40, 50, 75, 100, 200, 500, 1000
e The number of changed values: K = 2,3,4,5,10,100

Experiments were run either 1000 or 10000 times (m = 1000 or m = 10000).
The results of the experiments are displayed in Tables 5 — 17. Tables show
the number of cases that violate monotonicity. This is, each cell of the table
indicates how many times the monotonicity condition was violated when m
experiments were executed.

These experiments were programmed in CLisp (running on RedHat 6.2 for a
PC) and for scenario 1 with K = 2 and m = 10000 it took 3 hours to compute all
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NN | 5 10 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 g 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 29 17 5 3 2 1 1 0 0 0 0 0 0
5 19 43 28 25 29 21 12 13 3 0 1 0 0
6 3, 69 53 34 3 22 26 18 15 13 15 7 5
7 37 104 93 80 66 52 48 84 84 16 4 0 0
8 39 108 105 103 79 7 45 38 2 17 15 10 1
9 41 168 186 181 105 100 75 66 52 46 14 3 0
10 | 27 146 133 182 98 141 77 70 49 88 28 22 16
20 | 20 211 214 185 192 216 183 183 127 131 69 28 20
30 4 148 212 191 196 235 236 23, 188 179 104 59 28
50 | 2644 3592 3617 3789 3750 3714 3766 3728 3667 3677 3632 1933 1115
100 | 0 27 220 697 1550 2695 5230 6649 6934 6846 6886 8168 111

Table 5: Experiments for scenario 1 with K = 1 (number of changed values
from a! to a?). Rows correspond to different number of labels (parameter 1)
and columns correspond to different number of information sources (parameter
N). 10000 tests have been performed for each experiment

examples for all considered pairs of N and [ (this is the completion of Table 6).
Instead, the computation of the Table 17 (scenario 2, K = 100 and m = 10000)
took about 6 hours.

From the tables, it can be observed that for a small number of categories
the number of monotonicity violations is small (less than 3%). This number
is even smaller for the second scenario. The experiments also show that for
the second scenario when the value K increases, the percentage of violations
decreases (specially for the experiments with a small number of categories — see
for example Tables 16 and 17 and compare with Table 12). For the first scenario,
conclusions are not so clear, but it seems that larger values of K, the number of
violations decreases for a small number of information sources and increases for
a larger number of sources. For example, for K =1 and N = 10 and N = 15,
the cells for I = 10 are about 140 while for K = 5, the same cells are about 100,
for K = 20 they are about 85, for K = 100 they are also about 85. Instead, the
corresponding cells (I = 10) for N =40 and N = 50 are, respectively, for K =1
about 75, for K = 5 about 148, for K = 10, 127 and 164, for K = 100, 140
and 178. Thus, the number of violations tends to decrease for a small number
of sources.

Worst cases are found for large number of categories (30 or larger). In this
case, a small variation of the input data implies a large modification of the
convex function (this is the case of Example 3). For example, Table 5 shows
that for 50 categories and 5 information sources there is 26.44% percent of the
cases that do not satisfy monotonicity, for 100 categories and 75 sources we have
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NN | & 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 15 26 5 2 2 3 0 0 0 0 0 0 0
5 17 38 29 28 30 27 26 19 7 3 0 0 0
6 31 54 58 67 59 37 38 28 16 11 28 7 15
7 23 72 91 70 79 81 58 62 36 27 6 0 0

8 41 62 84 101 92 106 68 76 54 43 37 20 7
9 21 90 110 106 133 109 112 94 84 65 31 2 0
10 27 94 111 118 146 137 99 104 82 73 39 19 16
20 14 112 109 146 206 218 2183 224 185 182 111 68 35
30 6 74 97 118 181 215 246 269 223 257 177 92 51
50 734 1010 2922 3625 3729 3705 3730 3770 3744 3710 3809 3688 2318
100 0 0 3 3 9 12 50 123 1949 6228 6905 6647 616

Table 6: Experiments for scenario 1 with K = 2. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment

almost 70% percent of the cases.

From the point of view of aggregation for prototype selection, the experi-
ments show that the proposed aggregation method is a valid alternative because
the usual number of categories is usually smaller than 15. For example, in the
experiments in [3], the average number of categories is 13, only 30% of the vari-
ables have more than 15 categories and the variable with a larger number has
25 categories. In addition, in the particular case of clustering for microaggre-
gation [3], [4], the number of values to be aggregated is usually below 10. In a
general clustering problem, this number will be quite larger but the number of
categories will be about the same.

An additional element to be taken into account is that in our experiments
the values are generated randomly and, thus, a given vector a can have very
dissimilar values. However, when applying aggregation to clustering, the values
would be similar. In fact, they have to be so because they are put together
in the same cluster because they are similar. The effects of non monotonicity
would be smaller in this latter case. Recall that non monotonicity is caused by
the introduction of new elements in the convex function acc’, therefore, when
values are similar, the number of added elements will be small.

5 Conclusions
In this work we have reviewed existing aggregation operators in ordinal scales for

their application to prototype construction. We have analysed their drawbacks
and we have proposed two general procedures to solve them. Then, we have
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applied these procedures to the median to define the CWOW — Median. We
have analyzed some of the properties of this operator. We have seen that it
satisfies unanimity and that the value belongs to the interval defined by the
minimum and maximum of the values. We have shown that the procedure does
not satisfy monotonicity. We have shown with an example that the modification
of a single label does not modify in a substantial way the outcome (a label is
changed by the contiguous one). Only for an example with a large domain L,
the outcome of the CWOW — Median is modified substantially. Experiments
have confirmed that violations of monotonicity are not relevant for a small
number of categories and of sources. This is the typical case in clustering and
more specially in microaggregation. Experiments show that monotonicity is not
satisfied for a large proportion of scenarios when the number of categories is
large. However, this is not a common situation.

As in usual applications the number of categories in L is not large, and the
non-monotonicity can be understood from the point of view of the uncertainty
attached to categories (e.g. imprecision), we consider appropriate the use of
CWOW-Median for prototype selection. In particular, because it allows com-
pensation a property that the other operators lack, and also because it allows a
parametric definition (through the quantifier) that allows the user to customize
the application or to apply learning procedures. In particular, and as shown in
[3], parameterization is a relevant aspect in microaggregation to find the best
tradeoff between information loss and the risk of releasing unprotected data.

NN | 5 10 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 g g 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 28 25 6 4 3 1 1 0 0 0 0 0 0
5 29 54 86 45 41 87 84 6 1 0 0 0
6 20 47 83 50 61 56 8, 86 32 25 25 15 11
7 29 67 8 90 100 97 89 11 60 48 14 1 0
8 25 75 73 89 106 95 81 8 55 5, 49 32 20
9 20 80 106 105 129 116 127 113 98 68 36 3 1
10 | 28 8% 105 130 104 136 124 135 96 8 81 39 26
20 | 11 98 77 121 177 159 181 205 219 201 130 85 52
30 | 10 55 108 99 131 185 208 228 249 272 225 110 63
50 | 722 322 1091 2263 8156 8524 8706 8690 8755 3672 3725 3787 3325
100 0 00 0 4 3 17 15 17 32 209 6882 6866 2766

Table 7: Experiments for scenario 1 with K = 3. Rows correspond to number
of labels and columns correspond to number of information sources. 1000 tests
have been performed for each experiment
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=

5 100 15 20 25 30

I\ 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 23 25 7 9 5 2 0 0 0 0 0 0 0
5 25 40 30 51 30 49 31 25 6 7 0 0 0
6 25 59 58 12 55 60 48 54 46 35 40 20 18
7 20 70 T2 66 85 105 80 86 63 45 9 0 0
8 2 69 80 84 102 109 104 110 75 79 37 31 25
9 29 82 110 110 138 130 135 137 102 82 44 3 0
10 26 88 95 114 112 181 163 111 131 95 53 52 43
20 11 9% 101 123 177 186 196 212 219 217 154 87 62
30 7 65 110 103 141 162 168 247 292 289 261 142 98

50 740 278 158 322 950 1936 38517 3711 3728 3864 3843 3754 3727
100 1 0 0 3 2 11 17 11 29 26 3988 6839 5879

Table 8: Experiments for scenario 1 with K = 4. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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NN | 5§ 100 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 26 24 11 4 3 1 0 0 0 0 0 0 0
5 18 40 19 46 43 56 45 42 18 18 0 0 0
6 31 67 8 6 78 81 84 93 129 152 222 230 265
7 26 58 95 98 97 107 95 121 123 108 102 71 10
8 22 65 68 90 102 106 125 150 172 165 257 375 341
9 30 70 95 105 150 184 144 164 160 191 164 173 103
10 25 84 99 123 118 147 140 178 181 199 256 385 47
20 13 113 118 123 141 150 179 196 271 304 308 3874 466
30 6 67 100 105 146 178 196 239 251 330 407 453 437
50 684 257 98 68 39 2 40 52 18 71 118 202 322
100 0 3 0 5 6 7 11 19 26 28 42 33 16

Table 11: Experiments for scenario 1 with K = 100. Rows correspond to number

of labels and columns correspond to number of information sources. 10000 tests

have been performed for each experiment
I\N 5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 30 6 3 0 0 1 0 0 0 0 0 0 0
5 20 13 8 9 7 18 8 8 2 4 0 0 0
6 26 33 29 18 21 8 10 10 6 7 4 5 2
7 28 76 59 36 33 38 32 22 16 21 4 0 0
8 36 108 73 68 47 40 30 15 19 16 12 11 8
9 48 158 100 87 94 70 62 43 41 35 19 0 0
10 58 158 122 114 93 80 74 59 61 31 20 26 11
20 27 308 314 282 318 262 252 239 170 147 92 42 31
30 11 209 346 331 828 364 329 841 314 250 161 75 47
50 3392 4476 5033 5024 4949 4697 4514 4271 8864 3562 3152 2308 1410
100 1 15 131 367 783 1277 2318 2883 3591 6257 5910 4874 458

Table 12: Experiments for scenario 2 with K = 2. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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NN| 5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 22 30 15 8 0 2 0 1 0 0 0 0 0
5 26 43 42 8 27 83 82 17 9 6 0 0 0
6 25 68 61 69 49 59 41 84 41 18 22 21 9
7 29 63 67 105 94 8 8 11 5T 44 15 0 0
8 27 76 8 108 105 93 87 18 59 61 39 34 26
9 26 90 94 122 116 128 118 118 96 70 43 2 0
10 | 29 8 95 112 137 132 184 123 9% 54 5/ 89 38
20 | 18 77 97 145 156 168 204 249 224 214 128 U 50
30 | 4 68 119 115 146 177 191 227 268 805 237 135 11
50 | 688 337 1069 2251 3178 3548 8733 8176 8790 3713 3760 3826 3454
100 0 0 3 3 2 6 11 18 33 202 6891 6910 2707

Table 13: Experiments for scenario 2 with K = 3. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment

NN | 5 10 15 20 25 80 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 11 0 0 0 0 0 0 0 0 0 0 0 0
5 10 4 1 1 1 1 0 0 0 0 1 0 0
6 13 10 8 3 5 3 5 0 3 1 3 1 3
7 19 28 16 9 10 5 10 12 5 3 2 0 0
8 0 47 21 17 1 12 6 9 5 6 10 4 3
9 3% 65 60 %0 37 28 88 85 83 17 7 3 0
10 | 52 110 56 52 46 49 32 28 20 16 18 6 9
20 | 54 405 841 804 252 249 28, 208 167 142 80 42 25
30 | 22 817 463 423 460 446 38, 368 323 292 177 95 57
50 | 8284 4136 5440 5899 5981 5856 5569 5104 4530 4276 3678 2833 1930
100 | 1 6 48 110 25, 482 1078 1499 219 3961 6682 661, 2566

Table 14: Experiments for scenario 2 with K = 4. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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NN| 5 10 15 20 25 80 40 50 75 100 200 500 1000
) 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 9 0 1 0 0 0 0 0 0 0 0 0 0
5 7 2 1 4 1 0 0 0 1 1 1 0 0
6 7 2 1 3 0 3 0 0 0 1 0 1 2
7 28 30 5 2 7 8 1 6 6 5 2 1 0
8 26 28 19 7 11 7 1 9 6 4 3 4 1
9 0 47 %0 21 20 17 22 18 8 10 6 1 0
10 | 41 59 38 8% 29 14 17 16 13 1 5 4 6
20 | 52 857 295 817 261 208 199 186 136 129 79 45 26
30 | 48 856 496 443 462 4389 415 383 305 256 175 90 60
50 | 3012 3727 5261 5912 6029 6044 5847 5496 4798 4349 3798 3036 2156
100 | 0 4 28 60 164 824 704 1091 1686 3032 6647 7012 337

Table 15: Experiments for scenario 2 with K = 5. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment

I\N 5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0 0 0 0 0 0
7 3 2 0 0 1 0 0 0 0 0 0 0 0
8 1 3 0 1 1 0 1 2 0 1 0 0 0
9 10 8 5 1 1 1 2 0 1 1 2 0 0
10 21 14 10 5 2 2 3 3 3 1 2 2 2
20 58 284 148 169 128 120 62 69 48 50 42 23 21
30 41 406 437 858 337 832 269 242 208 163 123 66 41
50 2131 2121 3429 4569 5242 5809 6140 6009 5380 4970 4116 3359 2624
100 4 0 0 3 7 24 76 151 893 970 3301 8344 6666

Table 16: Experiments for scenario 2 with K = 10. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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A\NN| &5 10 15 20 25 30 40 50 75 100 200 500 1000
2 0 0 o o 0 0 0 0 0 0 0 0 0
3 0 0 o o 0 0 0 0 0 0 0 0 0
4 0 0 o o 0 0 0 0 0 0 0 0 0
5 0 0 o o o0 0 0 0 0 0 0 0 0
6 0 0 o o o0 0 0 0 0 0 0 0 0
7 0 0 o o o0 0 0 0 0 0 0 0 0
8 0 0 o o 0 0 0 0 0 0 0 0 0
9 0 0 o o 0 0 0 0 0 0 0 0 0
10 0 0 o o 0 0 0 0 0 0 0 0 0
20 0 0 o o o0 0 0 0 0 0 0 0 0
30 0 4 1 0 1 0 0 0 0 0 0 0 1
50 416 286 91 39 20 10 13 83 954 2860 4747 3406 3093
100 5 0 o o0 0 0 0 0 0 0 0 0 21

Table 17: Experiments for scenario 2 with K = 100. Rows correspond to number
of labels and columns correspond to number of information sources. 10000 tests
have been performed for each experiment
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