

[image: P:\O\Osage\130311 CBS\CBS_logo_FC.png][image: P:\O\Osage\130311 CBS\CBS_logo_FC.png]Robot Framework v4 Technical Documentation
Report

project number

remarks
The views expressed in this paper are those of the author(s) and do not necessarily reflect the policies of Statistics Netherlands.

12 juni 2015
CBS Den Haag
Henri Faasdreef 312
2492 JP The Hague

P.O. Box 24500
2490 HA The Hague

+31 70 337 38 00

www.cbs.nl

Guido van den Heuvel

Index
Introduction
In this document we describe Robot Framework v4 on a technical level. We describe its architecture and inner workings in considerable detail. We also describe which standard packages are used and why, and discuss the considerations that have led to the current design. The aim of this document is to increase the maintainability of the software by developers other than the original author.

Code structure
The Framework has been written in Javascript, and runs in the node.js runtime environment. The code is divided into about 20 source files. Each source file contains related bits of functionality; most source files define a single Javascript object. In the illustrations below we have included all source files and their mutual dependencies.
Commandline

Figure 1: Main components of Robot Framework v4
Logger
Levellogger
Levellogger-prototype
Logger-prototype
outputformat

Figure 2: Additional components of Robot Framework v4
In the remainder of this chapter we describe these components in more detail.
Framework
This is the main entry point of the Robot Framework. The commandline module is invoked to parse the command line arguments, the technical and user logs are initialized, the site-specific configuration is loaded and the Robot object is initialized. Finally, control is given to Robot.processItems(), the main loop of the Robot Framework.
Commandline
This module provides a simple parser for command line arguments. Each argument is of the form
--<name>=<value>
The <name> must be provided by the invoking code; it returns the <value> of the command line argument with the given <name> as a string. If multiple arguments with the given <name> are present, all corresponding <value>s are returned as a string array. If no argument with the given <name> is present, null is returned. Optionally, the caller can specify the minimum and maximum number of arguments with the given <name> that may be present; if the number of arguments with the given <name> does not fall between these limits, an error is thrown.
The code does not perform any validation of the <value>s found; they are returned as-is to the caller.
Robot
This module contains the main loop of the Robot Framework code. At the heart of this main loop is the so-called todoList: this is the list of all browser actions that must be done. The todoList consists of one or more todoItems; each todoItem describes a single browser action. Each browser action is denoted by a specific browser opcode. All valid opcodes are listed in the Opcodes module.
The most basic browser action is “open a web page with a given URL”, with the opcode OPEN; other browser actions are "click on a link in the current page” (CLICK), “do a mouseover over an item in the current page” (HOVER), “scroll the current page all the way down” (SCROLL), “go back one step in the browser history” (BACK), and “do nothing” (NONE). The browser actions and their effects are described in more detail in [1].
The todoList is continuously updated with new todoItems, because each web page can give rise to extra items. These new todoItems are generated byzal ik je

Design considerations: Components
In this chapter we discuss the major components of Robot Framework v4. We discuss some of the reasons we have chosen particular solutions, and we discuss some of the drawbacks we have encountered based on our choices, together with possible solutions.
Microsoft Windows
We decided early on that our software must run in a Microsoft Windows environment. The main reason for this decision is that this is the de facto standard within CBS. Currently, we develop Robot Framework v4 on laptops running Windows 7 32-bits, while regular production runs on servers with Microsoft Windows Server 2008 R2 64-bits.
Node.js
Robot Framework v4 has been written in Node.js. Node.js is a stand-alone implementation of the Javascript language. Our reasons for implementing the Robot Framework in Node.js were two-fold:
1. Other software (in particular, the Robot Tool) developed by the internet observation team is also written in Node.js.
2. Javascript is THE programming language associated with the internet. As such, it contains a lot of state-of-the-art internet technology.
Drawbacks of using Node.js
Node.js is an inherently asynchronous language. Moreover, there does not exist any mechanism to convert asynchronous calls into synchronous ones[footnoteRef:1]. This is a real drawback for the Robot Framework, since the Framework is inherently a synchronous application. First a web page is loaded, then hyperlinks to other pages that must be visisted by the Framework are extracted from this web page, and finally data is extracted from the page before visiting the next page. In order for the Framework to operate correctly, much care must be taken to properly synchronize these various sub-tasks, each of which is asynchronous by nature. In my opinion this has added considerable complexity to the Robot Framework v4 code. [1: Originally, such a mechanism was included in the specification of Javascript / ECMAScript 6 (aka ECMAScript 2015), the current version of the language implemented by node.js. However, this has been postponed.]

If I had the opportunity to start all over, this drawback would be big enough for me to seriously consider writing the Framework in a different language that is inherently synchronous in nature. Suitably candidates would include Python and Java.
PhantomJS
Under the hood Robot Framework v4 uses a “real” internet browser to access web pages. The reasons for doing so are two-fold: firstly, the Robot Framework is meant to mimic the user experience of people accessing the internet as much as possible, and people use web browsers to do so. And secondly, web pages are becoming ever more dynamic and increasingly use techniques such as Javascript to do so. In order for these web pages to work correctly, a full-blown browser engine is necessary. Simple solutions such as downloading the HTML source code (as Robot Framework v3 did) no longer suffice.
The actual browser that we use is PhantomJS. The main reason we use PhantomJS, and not one of the more well-known consumer browsers such as Firefox, Chrome or Microsoft Edge, is that PhantomJS is a headless browser, which means that it does not have a user interface. It can be run silently in the background, and is faster than “traditional” browsers.
While not one of the big consumer browsers, PhantomJS is closely related to some of them, as it uses Webkit as its browser engine. Until 2013 Webkit used to be the browser engine of Google Chrome, and it still is for Apple’s Safari. This commonality with other browsers reduces (we hope) the risk of cross-browser errors, which means that the risk of pages being rendered differently in PhantomJS from other more popular browsers is small.
We did consider other possible solutions, apart from PhantomJS. But all of these turned out to have significant drawbacks, which is an additional reason for choosing PhantomJS as our browser of choice:
· CasperJS: in comparison with PhantomJS, CasperJS has a more powerful built-in programming language. However, we determined that we did not need this extra functionality, and since CasperJS is built on top of PhantomJS we decided that it would not bring us anything extra.
· ZombieJS: is not a full-blown browser, but instead simulates a browser inside node.js. As it is not a full-blown browser we decided not to pursue this alternative, as we deemed the risk too great that web pages would render differently in ZombieJS than in real-world browsers.
· Using Webkit (or a different browser engine, such as Gecko (the browser engine used in Firefox)) directly. This would have the advantage that the Framework would have much more control over the browser than with PhantomJS (PhantomJS runs as a separate process, and communicates with the Framework via a HTTP connection). However, this option would add considerable complexity to our software, so we decided not to pursue this option. Also, it would mean that a browser crash (which is, unfortunately, not a rare occurrence) would crash the framework entirely. The current framework detects and corrects for browser crashes, which would be much harder to do if the browser ran within the same process as the framework itself.
· Using a “real-world” browser such as Google Chrome. We decided against this option because it is as yet not possible to run Chrome in headless mode under Microsoft Windows.
Ideally we would like to use the most recent version of PhantomJS, which as of the time of writing of this document is PhantomJS 2.1.1. However, it turns out that PhantomJS 2.x has a very annoying bug which prevents us from using it: PhantomJS 2.x versions have a very large memory leak when you turn off image downloads. And we don’t want to download images, as it has turned out that the framework runs much slower when you do so, and we don’t need the images anyway. So, because of this reason, we are still using PhantomJS 1.9.8, which is an older version from 2014.
Drawbacks of PhantomJS 1.9.8
We start to see the occasional website (Menatwork.nl being an example) that uses new web standards such as CSS3 not fully supported by PhantomJS 1.9.8. So an upgrade to a newer version would be a good idea. However, as outlined above, the most recent version of PhantomJS does not work very well with Robot Framework v4. Moreover, I don’t believe that this problem will be fixed in the near future with a maintenance release. The reason for this is that PhantomJS includes Webkit indirectly via the Qt library (so webkit is included in of Qt, which in turn is included in PhantomJS), and as of Qt version 5.5 (release date 22 june 2015), QtWebkit is deprecated in favour of the new QtWebengine (a browser engine based on the current Google Chrome engine). PhantomJS maintains that the memory leak originates in QtWebkit, and because of the latter’s deprecated status, I don’t expect that much work will be done in that area. I also don’t expect a PhantomJS version based on QtWebengine in the near future.
Also, PhantomJS is not updated as frequently as more popular browsers. Moreover, since Webkit is included in PhantomJS in such a round-about fashion, PhantomJS typically uses an out-of-date Webkit version in its releases. Therefore PhantomJS is almost by definition an outdated browser.
One of the areas in which this is directly visible is in the XPath support. PhantomJS only supports XPath 1, which lacks some much-needed functionality such as case-insensitive matches. I would like to include XPath 2, but that is not possible at the moment. And as far as I know this is not caused by us using an old version of PhantomJS: based on experiments my conclusion is that PhantomJS 2.1.1 still does not support XPath 2.
Another drawback is directly related to PhantomJS being headless. It would be very nice when debugging a robot configuration, to have the possibility of running the Framework with a “normal” browser, so that you can see what is happening in the browser. For that reason alone I would like to include the possibility of running the Framework in a “headful” browser such as Chrome. And if we decide that including Chrome as a browser is worthwhile, I would be very much interested to see how it performs during regular operation of the Framework, because it would completely solve the “PhantomJS is outdated” problem.
Selenium
Selenium is a software library that enables programs to communicate with an internet browser running as a separate process. Selenium is available for a lot of different programming languages, among them Node.js. Moreover, it works with all the popular internet browsers, including PhantomJS. Its API is almost fully browser-independent, which means that switching from one browser to the next is a relatively simple task.
Selenium communicates with the browser via the JSONWire protocol. This protocol specifies a way in which programs can communicate with the browser, via HTTP requests. Like Selenium, JSONwire is almost fully browser-independent.
The reason we use Selenium, instead of implementing the JSONWire protocol directly, is that JSONWire operates on a relatively low level. Moreover, Selenium also implements some much-needed tools for synchronizing different JSONWire requests, in particular a queue for these requests, which ensures the next request is only fired off after the previous one has finished, and a promise library. Promises have turned out to be a great way to synchronize multiple asynchronous tasks.
Drawbacks
JSONWire, and by extension Selenium, is relatively slow in its communication with the browser. A typical request takes about 20 milliseconds. This in itself is not very much, but it is prohibitively large for data extraction. Consider, e.g., a result page from Wehkamp. These contain 96 items per page; for every item, multiple properties must be extracted, which results in about 500 or so tags that must be searched for in the page. Searching for each single tag is a separate JSONWire request, which means that doing data extraction in this fashion would add 5+ seconds for every page. This is prohibitive in light of the fact that downloading a single page takes only about 1 or 2 seconds and the Wehkamp website consists of a few thousand pages. Using JSONWire or Selenium in this way would therefore add about 4 hours to the running time of the Wehkamp robot[footnoteRef:2]. [2: We solve this by using a single JSONWire request to obtain the page source for the entire page, and doing the data extraction in Node.js, by means of the Cheerio package.]

Cheerio
Cheerio is a Node.js package for parsing HTML page source and searching and changing parts of it. In Robot Framework v4 it is used for data extraction.
Drawbacks
Cheerio has two shortcomings:
· It does not support XPath selectors. It does support CSS selectors, but these have been proven to be not powerful enough in certain situations.
· It contains some irritating bugs in its CSS selectors (e.g., nth-of-type(), nth-child()).
Design considerations: Implementation issues
Data extraction
As we have seen in the previous chapter, performance issues forced us to implement data extraction in a certain way. In broad outline, data extraction works as follows:
1. [bookmark: _Ref456362602]Find all items on the page for which data must be extracted
2. [bookmark: _Ref456362606]For each item, do the following:
a. [bookmark: _Ref456362608]Find all data elements that must be extracted
b. Extract these elements
3. Write all extracted data to file
Since the number of items on a single page can be quite large (e.g., 96 for Wehkamp), and there’s typically about 5 items that must be extracted for each item, the total number of elements that must be extracted can be as high as 500.
To implement this algorithm we need some form of communication with the browser, since the data that is to be extracted is only available within the browser. But since the browser has at least one runtime environment (the Javascript runtime environment of the page itself), a choice must be made to either
a. [bookmark: _Ref456362367]Implement steps 1 and 2a/b in the browser, then send the results back to the node.js environment;
b. [bookmark: _Ref456362502]Implement the entire data extraction algorithm in node.js, and start by obtaining the entire page source from the browser
c. [bookmark: _Ref456362301]A hybrid method, in which some steps are performed by the browser and some in node.js
All three approaches have their own advantages and drawbacks.
Approach c, which we have tried to implement, has been described in the previous chapter – it runs into problems with performance due to the slow communication between the browser and node.js.
Approach a, which we did not pursue, is potentially the fastest and most powerful implementation but it has the drawback that we would have to inject Javascript code containing the extraction code into the web page; this might cause all kinds of hard-to-predict problems as the injected code might interfere with the regular Javascript code of the page.
Approach b is the one we have chosen to implement, but it has the drawback that we have to perform searches for items and data elements (steps 1 and 2.a in the algorithm outline above) within node.js; for this we depend on node.js packages, as node.js does not include this functionality natively. And here we encounter the problem that I have not been able to find a good, bug-free and powerful package to find HTML page element using XPath, which would be my preferred element selection language. The current implementation only allows the use of CSS selectors, which, while nice, are much less powerful than XPath.
Possible improvement
[bookmark: _GoBack]A possible improvement is to implement approach a despite the possible drawback outlined in the previous section. We note that we have used one instance of Javascript injection (it seems to be the only way to implement page scrolling), with considerable success. So maybe the drawbacks of Javascript injection are less than anticipated.
References
[1] [bookmark: _Ref456344637]Heuvel, E.G. van den, Robot Framework v4 User Manual

Robot Framework v4 User Manual 8
image3.emf

Framework Robot Extractor ColumnCounts Browser LinkedList Navigator Wait todoItem opcodes Scroll

image4.emf

Framework Robot Extractor ColumnCounts Browser LinkedList Navigator Wait todoItem opcodes Scroll

image1.emf

image2.emf

