

[image: P:\O\Osage\130311 CBS\CBS_logo_FC.png][image: P:\O\Osage\130311 CBS\CBS_logo_FC.png]Robot Framework v4 User Manual
Report

project number

remarks
The views expressed in this paper are those of the author(s) and do not necessarily reflect the policies of Statistics Netherlands.

12 juni 2015
CBS Den Haag
Henri Faasdreef 312
2492 JP The Hague

P.O. Box 24500
2490 HA The Hague

+31 70 337 38 00

www.cbs.nl

Guido van den Heuvel

Index
1.	General overview	4
1.1	Navigation	4
1.2	Data extraction	6
2.	Site Configuration File Syntax	7
2.1	Overall file structure	7
2.2	The variables object	8
2.3	The startUrls object	8
2.4	Wait block	9
2.5	Navigation rules	10
2.6	Backward navigation rules	13
2.7	Extraction Rules	14
3.	Custom operations	16
3.1	Common features	16
3.2	URL operations	17
3.3	Text operations	17
3.4	Extraction operations	18
3.5	Wait operations	19

[bookmark: _Toc424119673]General overview
The Robot Framework enables users to extract data from web sites. It has been designed to extract large amounts of data from web shops, such as article descriptions and prices, but can be used for a large variety of other types of web sites with possibly very large amounts of data.
To be able to deal with a specific web site, the user must provide the Framework with a site-specific configuration file. How to write these configuration files is the main topic of this manual. The configuration file syntax will be described in detail in the next chapter; the remainder of the current chapter consists of a more conceptual overview of how the Framework operates and the configuration options available to users.
The Framework consists, briefly speaking, of two major components:
· Site navigation
· Data extraction
Site navigation deals with traveling from page to page within a website or across different web sites, whereas data extraction deals with the process of extracting data from web pages and storing it in an accessible format.
In the rest of the current chapter we give an overview of concepts used in site navigation and data extraction, and some other, related concepts.
[bookmark: _Toc424119674]Navigation
Navigation, in the context of the internet, is the process of going from one web page to the next. When using a web browser, a user can navigate the internet by interacting with navigation items on web pages. Hyperlinks are the prime example of this. More generally, users can interact with all kinds of elements on a web page with Javascript attached to them (an example of this is gmail.com: many of the buttons and other navigation items on the page are powered by Javascript). While not “navigation” in the strict sense, in this document we will use the term to include this more general type of interaction.
Since the Robot Framework aims to scrape entire web sites, with multiple (often a lot of) pages, a mechanism for site navigation is needed. And since one of the design goals of version 4 is the correct handling of Javascript-powered sites, interaction with Javascript elements on a web page is needed as well.
Navigation within the Robot Framework is accomplished by navigation rules. In the rest of the current chapter we will describe how these navigation rules work on a conceptual level; in the next chapter we will describe the syntax of the navigation rules in the configuration file.
Navigation contexts
Many web sites have a large number of pages with a similar structure. An example is the product overview pages of a typical web shop: the structure of the menu items present at the top or in a sidebar are often the same for all overview pages from the entire web shop. Therefore it is often very convenient to define groups of web pages for which the same set of navigation rules is used. These groups are called navigation contexts.
Navigation rules
Within each navigation context there are one or more navigation rules. Each navigation rule describes the set of elements on the web page the rule applies to. It also specifies what kind of interaction to have with this set of elements. Interactions include left-clicking on the selected elements, hovering over these elements (also called a mouseover) or following one or more hyperlinks. Also included may be:
· A navigation context, which will be used as the navigation context of the web page reached after interacting with the specified elements;
· A wait block, which is used to wait for the interaction to complete. A wait can be an unconditional wait for a specified time (e.g., for a pulldown menu to fully unroll) or a conditional wait, to wait for a certain element to appear on (e.g., an item loaded using an AJAX call) or disappear from (e.g., an hourglass icon signifying that the page is busy) the page.
· A navigation variable name and associated text operation. Navigation variables are the Framework’s way of storing the bread crumb trail, which is the path taken through several web pages from a web site. The text operation specifies which data should be stored in the navigation variable. It is typically used to obtain the link texts of a set of hyperlinks in a site menu, but can be used far more generally to extract and store virtually any information pertaining to the site navigation.
· An extraction context. Each navigation context has an associated extraction context, which defines which set of data extraction rules (if any) to extract and store data from the web page. We note that the extraction context specified is the extraction context from the new page, reached on completion of the navigation rule.
· A URL operation. Only used for following hyperlinks (and mandatory in that case), this operation specifies how the URL to follow is to be constructed. Typically the operation will be the standard “getHref” operation that simply uses the contents of the href attribute of an <a> tag, but it can also be a user-specified function (e.g., to generate a new URL based on the current one by increasing the page number by 1).

Note that, while most of these are optional, it does not make much sense to omit both the navigation context and the extraction context from a navigation rule, because if you do the framework will not do anything with the web pages resulting from the rule.
Start rules
To get started the Robot Framework needs one or more start rules, which must be provided in the site configuration file. Each start rule must contain a valid URL for a web page; this page is opened in the same way as when a user enters a URL in the URL bar of an internet browser. Each start rule may also contain a navigation context, extraction context and/or wait block. These have exactly the same functionality as in a navigation rule. In fact, the start rules are dealt with in the same manner as navigation rules for following hyperlinks, with the only difference being that in start rules the page URLs are stated explicitly while in a navigation rule they are obtained from the current web page.
Note that, while both the navigation context and the extraction context are optional, it does not make much sense to omit both from a start rule, as the framework would not do anything with the web page indicated by the URL.
[bookmark: _Toc424119675]Data extraction
Data extraction is a two-step process: in the first step, items on the current page are selected via the item selector; in the second step properties are selected from these items based on the property extraction rules. The same set of property extraction rules is used for each item selected in the first step, which means that it is best (although not strictly necessary) to only select items with a similar structure and content in the first step. An example of this would be an e-commerce website: these websites often contain a lot of “overview” pages, each containing a list of products sold via the site. Typically, all items on such a list are formatted in the same fashion.
If a page contains only a single item from which data is to be extracted, the item selector can simply be used to select the <body> tag from the page. Alternatively, a more tightly constrained HTML tag containing all information about the item which is considered relevant can be used – this avoids selecting unwanted data. An example of this is a product detail page of an e-commerce website: Typically, each item on the aforementioned overview pages contains a hyperlink to a detail page on which more detailed information about the item is presented. Such a detail page obviously contains only a single item, which can be selected using one of the aforementioned techniques.

[bookmark: _Toc424119676]Site Configuration File Syntax
Each site configuration file must be valid Javascript. If it is not, running the Framework with the faulty file will result in an error message which looks like this:

C:\framework\framework v4\src\example\example.js:14
blablabla
^
ReferenceError: blablabla is not defined
 at Object.<anonymous> (C:\framework\framework v4\src\example\example.js:14:1)
 at Module._compile (module.js:460:26)
 at Object.Module._extensions..js (module.js:478:10)
 at Module.load (module.js:355:32)
 at Function.Module._load (module.js:310:12)
 at Module.require (module.js:365:17)
 at require (module.js:384:17)
 at start (C:\Users\EHVL\Documents\node-code\framework\framework v4\src\framework\framework.js:45:20)
 at Object.<anonymous> (C:\Users\EHVL\Documents\node-code\framework\framework v4\src\framework\framework.js:28:1)
 at Module._compile (module.js:460:26)

Note the filename and line number of the error (“:14”) in the first line; the file name corresponds with the site configuration file used, and the line number is from the line in which the error occurred.
[bookmark: _Toc424119677]Overall file structure
The site configuration file must be a valid Node.js module, and it must export the following objects:
1. variables: some system variables used in file name generation and version control
2. startUrls: contains the start rules
3. navigationRules: contains the navigation rules
4. backRules: contains the backward navigation rules
5. extractionRules: contains the extraction rules
6. urlCallbacks: contains custom operations used in the urlOperation field in the navigation rules
7. textCallbacks: contains custom operations used in the textOperation field in the navigation rules
8. extractionCallbacks: contains custom extraction operations used in the operation field in the extraction rules
9. waitCallbacks: contains custom wait functions used in the operation field inside a wait block.
items 1 to 5 only contain data. Items 6 to 9 contain Javascript code. As long as no custom operations are necessary, no coding experience in Javascript is necessary to configure the Framework. However, if you need custom operations you will have to program in Javascript yourself; this is considered advanced usage of the Framework and will be the topic of a separate chapter in this manual.
To be even more specific, a minimal site configuration file for the Framework looks like this:
module.exports = {
	variables: {},
[bookmark: _GoBack]	startUrls: {},
	navigationRules: {},
	backRules: {},
	extractionRules: {},
	urlCallbacks: {},
	textCallbacks: {},
	extractionCallbacks: {},
	waitCallbacks: {}
};

Note that the above configuration file, while valid, does nothing. It serves no purpose except to show the overall minimal structure of a site configuration file. To be of any use, the empty objects and arrays in the example above must be filled out. How to do this is the topic of the rest of this chapter.
[bookmark: _Toc424119678]The variables object
The variables object must contain the following two properties (which is Javascript terminology for object members):
1. robotName: string containing the robot name. It is convenient to use a name that is related to the website being scraped. So if you, e.g., want to scrape http://www.exampleshop.tv, you could use the string “exampleshop” as the robot name.
2. version: String containing the version number of the site configuration file. At CBS we use strings of the form “v5”. However, version is a free-form string, so you can choose any format that is convenient to you.
In addition, it may contain the following properties:
3. userAgent: string containing the user agent that phantomJS uses to identify itself. If omitted, the default phantomJS user agent is used instead.
4. isBrowserRestart: Boolean which determines whether phantomJS should restart itself periodically. For most websites, a periodic restart of the browser has shown to be beneficial (internet browsers are not fully stable, and a periodic restart prevents small errors that inevitably occur from accumulating and becoming fatal errors). However, for some websites, the periodic restart introduces more errors than it prevents. If omitted, “true” is taken as the default, which means that the browser is restarted every now and then.
As an example, consider this:
Variables: {
	robotName: “example”,
	version: “v1”,
	isBrowserRestart: true
}

In this example, the robot is called “example”, and it is version 1 of this robot. No user agent is specified, which means that the default phantomJS user agent is used. Also, the browser is restarted every once in a while. Note that isBrowserRestart could have been omitted in this example, which would have the same effect.
Note that here we have only shown the variables object itself; in practice this object would be part of the overall site configuration file, the structure of which we have presented in the previous paragraph. For clarity and brevity we will continue this practice of only showing the relevant object in examples.
[bookmark: _Toc424119679]The startUrls object
The startUrls object contains one or more start rules. Each start rule is a Javascript object which must have the following property:
1. url: string containing the absolute URL, including the protocol (i.e., it must start with “http://” or “https://”) of a web page to be used as a start page by the Robot Framework.
In addition, it may have the following properties:
2. navigationContext: string containing the navigation context to be used for the web page with the specified URL.
3. extractionContext: string containing the extraction context to be used for the web page with the specified URL.
4. wait: wait block. The syntax of a wait block is described in the next section.
Note that while both navigationContext and extractionContext are optional, omitting both at the same time does not make sense, as the Framework will not do anything with the specified URL if you do so.
Each start rule has a name, also called the start rule name, which may be freely chosen[footnoteRef:1]; no two start rules may have the same name. Each start rule is contained in a separate property within the startUrls object, with the property name used as the start rule name. In addition to start rules, the following property may also be present in the startUrls object: [1: This is not strictly true: the string “startVariable” may not be used as a start rule name.]

5. startVariable: name of an output variable.
If startVariable is present, an extra column will be added to the output; each record in the output contains the name of the start rule used to observe the item stored in that record. If startVariable is absent, then this extra column is not present in the output.
If more than one start rule is specified, each of them is a separate property of the startUrls object.
Consider this example:
startUrls: {
	startVariable: “Target-audience”
	gentlemen: {
		url: “https://www.exampleclothingshop.com/men”,
		navigationContext: “men”
	},
	ladies: {
		url: “https://www.exampleclothingshop.com/women”,
		navigationContext: “women”
	}
}

Here two start rules are specified, with one of them presumably visiting the men’s department of a (fictitious) online clothing retailer and the other visiting the women’s department. The column “Target-audience” is added to the output, and filled with the value “gentlemen” for all items observed when starting off from the first start URL, and with “ladies” for items observed based on the second start URL.
Also consider the following example:
startUrls:	{
clothing: {
		url: “https://www.exampleclothingshop.com”,
		navigationContext: “top-menu”
	}
}

In this example there’s only a single start rule; note that no startVariable has been defined, so there will not be a column in the output associated with the start URL (nor would one be necessary, since there’s only a single start URL). Despite this, the start rule must still have a name. As the start rule name will not be part of the output, any name will do. But please choose a meaningful one, as this makes for easier maintenance.
[bookmark: _Toc424119680]Wait block
A wait block object must have the following property:
1. operation: string containing the name of the wait operation used. This may be either a standard wait operation, or a custom operation. The standard wait operations are:
a. sleep: waits for a specified time interval, in milliseconds.
b. waitTillVisible: waits until a specified element is visible on the page
c. waitTillInvisible: waits until a specified element has become invisible on the page. As an example, consider the case where a web page is loading additional data and shows an hourglass indicator while it is busy. In that case waitTillInvisible can be used to wait until the hourglass disappears.
Each wait operation can have zero or more arguments, which must also be present as additional properties of the wait block. A sleep operation must have the following property:
2. duration: integer with the number of milliseconds to wait
The waitTillVisible and waitTillInvisible operations must have one of the following properties:
3. cssSelector: string containing a CSS selector selecting a page element that must be (in)visible for the wait to end;
4. xpathSelector: string containing an XPath expression selecting a page element that must be (in)visible for the wait to end.
Note that if both a cssSelector and an xpathSelector are present, only xpathSelector is used; cssSelector is ignored.
A description of the syntax of CSS selectors and XPath expressions is beyond the scope of the current document; a great deal of information on this can be found online.
Custom wait operations must be defined in the waitCallbacks object in the site configuration file. See the chapter on custom operations for details. Like standard wait operations, custom wait operations can have arguments; how to define these is also described in the custom operations chapter.
Example:
wait: { operation: “sleep”, duration: 2000 }
In this example the Framework waits for 2000 milliseconds before continuing.
[bookmark: _Toc424119681]Navigation rules
The navigation rules object contains zero or more properties, each of which contains a single navigation rules block. For each of these properties the property name can be freely chosen by the user and defines the navigation context associated with the navigation rules block it contains.
A navigation rules block consists of an array of one or more navigation rules. If a navigation rules block consists of a single navigation rule, the navigation rules block may either be an array with a single member, or it may be the navigation rule itself, omitting the array notation entirely.
A navigation rule must contain the following properties:
1. action: string containing the action that the browser must perform when executing this rule. The following lists all valid actions:
a. OPEN: Opens new web pages by mimicking a user typing a URL in the URL bar. The URLs are obtained using the operation specified in the urlOperation property from the page items selected by the cssSelector or xpathSelector properties.
b. CLICK: Clicks on the page items specified by the cssSelector or xpathSelector properties. All items selected by these selectors are clicked on in sequence, interspersed with backward navigation actions to restore the browser state after each CLICK. Note that the backward navigation actions are necessary here because it is entirely possible that the second item selected would not be present on the page after clicking on the first item.
c. HOVER: Performs a mouseover, or hover, over the items selected using the cssSelector or xpathSelector properties. The browser mimics a user moving the mouse cursor over the selected items. All items selected by these selectors are hovered over in sequence, interspersed with backward navigation actions to restore the browser state after each HOVER.
d. SCROLL: Scrolls the page down to the bottom of the current page. It does this once for every item selected, so it is not really useful to use a selection rule with this action that selects more than one item. At the moment it always scrolls down the entire page, regardless of the item selected (in future we may upgrade this to scroll the item(s) selected). Therefore, if you use an xpath or css selector, it is probably best to select the entire page by selecting the outer <html> element.
e. NONE: Does nothing with the page. Note that NONE does do something within the framework: it allows going to a new navigation or extraction context, based on the selector used. If the selector selects zero items, NONE will do nothing at all (just like any other action).
2. Either a cssSelector or an xpathSelector, or a scrollSelector. If both css & xpath selectors are present, the xpathSelector is used. A scroll selector is used only if the action is SCROLL or NONE; if the action is SCROLL, a scroll selector is used in preference of the other two; if the action is NONE, the scroll selector is used only is no xpath or css selector have been specified as well. These are strings containing a valid CSS selector, XPath expression or scroll selector, respectively. As before, a description of CSS selectors or XPath expressions is outside the scope of this document; scroll selectors are described in the following paragraph.
If the action is OPEN, the following property is mandatory as well:
3. urlOperation: string containing the operation used to obtain the URLs to OPEN. This may be either a standard URL operation or a custom one. For more details on custom URL operations we refer to the chapter on custom operations. Only one standard URL operation has been defined:
a. getHref: obtains the URLs to OPEN from the href attribute of the tags selected by the cssSelector or xpathSelector. For this to work properly, the selected tags must have href attributes, which in turn means that the selectors must select <a> tags (i.e., hyperlinks), and <a> tags only. The getHref operation also converts relative URLs (i.e., URLs relative to the URL of the current page) to absolute URLs.
In addition, the following properties may be present in navigation rules:
1. navigationVariable: string containing the name of a navigation variable. These may be chosen freely, and the same variable name may be present in different navigation rules.
2. textOperation: string containing the name of a text operation. The text operation is carried out to obtain the value of a navigation variable. While it is not, strictly speaking, mandatory to include a textOperation property if a navigationVariable property is present, failing to do so means that the navigation variable will always stay empty[footnoteRef:2]. A text operation may either be a standard text operation or a custom text operation. For more details on custom text operations we refer to the chapter on custom operations. Two standard text operations have been defined: [2: Strictly speaking this is not entirely true: if the same navigation variable is present in a different navigation rule, and for that navigation rule a text operation is defined, the navigation variable may be non-empty, but only as a result of the other navigation rule.]

a. getElementText: obtains the value of the navigation variable by extracting the text contents of the tags selected by the cssSelector or xpathSelector. The text contained in these tags, and in all descendant tags of these tags, is extracted and concatenated.
b. getElementTextOnly: obtains the value of the navigation variable by extracting the text contents of the tags selected by the cssSelector or xpathSelector. Only the text contained in these tags themselves is extracted; the text contents of descendant tags are not included.
3. navigationContext: string containing the navigation context of the current web page after the action of the current navigation rule has been performed. If navigationContext contains an undefined navigation context, it is ignored.
4. extractionContext: string containing the extraction context of the current web page after the action of the current navigation rule has been performed. If extractionContext contains an undefined extraction context, it is ignored.
5. backRule: string containing the name of the backward navigation rule that must be performed in between actions to be performed on different items on the current page by the current navigation rule. If backRule contains an undefined backward navigation rule name, it is ignored.
6. Wait: contains a wait block. Syntax and semantics for these wait blocks are the same as for wait blocks in the start rules.
7. selectorCondition: string containing a condition on the items selected using a css or xpath selector. Currently, only conditions regarding the visibility of the items selected are implemented; the only allowed values of selectionCondition are “visible” (which selects only visible items on the page), “invisible” (which selects only those items that are present in the page but are currently not visible), and “all” (which selects all items on the current page, regardless of their visibility). If selectionCondition is absent, “visible” is assumed as the default. Note that “invisible” and “all” are not possible in conjunction with CLICK or HOVER actions, as these actions simulate user interaction with the items selected: users normally cannot interact with invisible items.
Example navigation rules:

navigationRules: {
	top-menu: [
{ 	
			action: “OPEN”,
			cssSelector: “#menMenuItem”,
			urlOperation: “getHref”,
			navigationVariable: “target”,
			textOperation: “getElementText”,
			navigationContext: “men”,
			extractionContext: “overview”
		},
{ 	
			action: “OPEN”,
			cssSelector: “#womenMenuItem”,
			urlOperation: “getHref”,
			navigationVariable: “target”,
			textOperation: “getElementText”,
			navigationContext: “women”,
			extractionContext: “overview”
		}
]		
}

In this example the item on the web page with id “menMenuItem” is selected (which is presumably an <a> tag), the contents of its href attribute is used as the URL to open, and it is opened with the new navigation context “men” and extraction context “overview”. The text contents of the selected <a> tag is stored in a navigation variable called “target”[footnoteRef:3]. After that, the item with id “womenMenuItem” is selected and dealt with in a similar manner, but with a new navigation context “women”. [3: Note for users of the previous version of the Framework (version v3): this closely mimics Framework v3 operations.]

If the new navigation contexts of both rules would have been the same, these rules could have been combined into one rule:
navigationRules: {
	top-menu: { 	
		action: “OPEN”,
		cssSelector: “#menMenuItem,#womenMenuItem”,
		urlOperation: “getHref”,
		navigationVariable: “target”,
		textOperation: “getElementText”,
		navigationContext: “target-audience”,
		extractionContext: “overview”
	}
}
We have omitted the array notation, because the navigation rule block contains only a single rule.
A more intricate example is the following:
navigationRules: {
	men: [
		{
			action: “CLICK”,
			cssSelector: “.ListItem>div:nth-of-type(2)>a”,
			navigationVariable: “serialnumber”,
			textOperation: “getSerialNumber”,
			extractionContext: “detail”,
			backRule: “goback”
		}
]		
}
In this example all <a> tags inside the second <div> tag inside each tag with class name “ListItem” are clicked on (presumably, these are items of men’s clothing shown on an overview page); the new pages reached by these CLICK actions are opened without any navigation context (meaning no navigation actions will be performed on these pages) and with the extraction context “detail”. In between these clicks, the back rule named “goback” will be performed. We will encounter the “goback” rule in the section on back rules; for now, just assume that this rule will simply mimic a user clicking on the “Back” button in the browser.
Also, with each CLICK action, the navigation variable “serialNumber” gets a new value, which is obtained by the custom text operation “getSerialNumber”. We will describe this operation as one of the examples in the chapter on custom operations; for now, assume it obtains the href from the clicked-on <a> tag and extracts a serial number from this URL (which is often part of the URL of the detail pages of items sold in web shops).
Scroll selectors
A scroll selector selects an action (which must be either SCROLL or NONE) depending on the position of the vertical scroll bar of the current page in the browser[footnoteRef:4]. When a page is first loaded, the topmost portion of the page is “visible” in the viewport, so the vertical scroll bar is scrolled fully up. This position can change due to SCROLL actions, and scroll selectors can be seen as conditions placed on the position of the scroll bar. [4: Note that it may sound a bit strange to talk about scroll bars within the context of a headless browser. Be that as is may, phantomjs simulates a viewport (the visible portion of a webpage in an “ordinary” browser) and the scroll bars associated with the viewport. Scroll bars in phantomjs work exactly the same as in other browsers.]

The formal definition of the syntax of a scroll selector is as follows:
<scroll_selector> ::= <ws> <opt_negation> <ws> <position_indicator> <ws> <position> <ws>
<opt_negation> ::= “not” | “”
<ws> ::= <whitespace_character> | <whitespace_character> <ws>
<position_indicator> ::= “above” | “below” | “at”
<position> ::= <numerical_position> | <word_position>
<numerical_position> ::= <number> <unit>
<number> ::= <digit> | < digit><number>
<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”
<unit> ::= “px” | “%” | “”
<word_position> ::= “top” | “bottom”
Informally, a scroll selector consists of one of the words “above”, “below” or “at”, followed by either a position as a number, or one of the words “top” or “bottom”, the whole optionally preceded by the word “not”. Examples of valid scroll selectors are:
“at top”, “above 60%”, “below 700px”, “not at bottom”.
The meaning of such a scroll selector is that the action is performed if the scroll bar obeys the selector. In other words, the selector “not at bottom” means that the SCROLL action is performed if the vertical scroll bar is not at the bottom, i.e., the page is not fully scrolled down.
One major use of scroll selectors is with web sites that use “infinite scrolling” as their paging mechanism. Infinite scrolling means that when a user scrolls fully down, additional items are automatically loaded and appended to the page. Because the page becomes bigger during this process, the scroll bar is then no longer at the bottom, enabling the user to scroll down further, and the cycle of loading extra bits happens once more, until there are no more items to be loaded, in which case the scoll bar stays fully down.
A typical set of navigation rules for an infinite scrolling site is as follows:
navigationRules: {
 scroll: [
 {
 action: "SCROLL",
 scrollSelector: "above bottom",
 navigationContext: "scroll",
 wait: {
 operation: "waitTillInvisible",
 cssSelector: "#infscr-loading"
 }
 },
 {
 action: "NONE",
 scrollSelector: "at bottom",
 extractionContext: "overzicht"
 }
]
}
The first rule of this set of navigation rules scrolls to the bottom of the page, then waits until the element with id “infscr-loading” (which is presumably an hour glass graphic or some such, which is displayed while the page is loading new items) disappears, before repeating itself if the page is no longer fully scrolled down. The second rule is invoked if the page remains fully scrolled down after waiting for the hourglass to disappear, and while it does nothing in the browser, it extracts data from all items currently visible on the page. We note that if we were to combine these rules into one, with the extraction context “overzicht” inside the rule with the SCROLL action, items would be extracted after each scroll, which has the undesired effect of extracting the items multiple times. E.g., all items present on the page from the beginning will be extracted after each scroll down, so they will appear multiple times in the output).
We note that this example also shows one of many cases where action NONE can be used to good effect. We also note that the above ruleset can be seen as a standard navigation rules pattern for web sites with infinite scrolling.
[bookmark: _Toc424119682]Backward navigation rules
The backRules object contains zero or more backward navigation rule blocks. Each backward navigation rule block is a separate property of the backRules object; the property name can be freely chosen by the user and is used as the back rule name when referring to it in the backRule property of a navigation rule.
Each backward navigation rule block consists of an array of one or more backward navigation rules. If a rule block contains only a single rule, the array notation may be omitted. A backward navigation rule must contain the following property:
1. action. The browser action to be performed. The following actions are defined:
a. OPEN: Opens a fixed URL,
b. CLICK: Click on an item on the current page
c. HOVER: Mouse over an item on the current page
d. BACK: mimics a user clicking the “Back” button in a web browser, which means that the browser goes back to the previous item in the browser history
e. DUPLICATE: duplicates the action (including all parameters) generated by the navigation block which includes this back rule
f. REPEAT: repeats a set number of actions undertaken before the action generated by the navigation block which refers to this back rule.
Note that some of these actions are the same as the actions in navigation rules. This is not a coincidence, as they really result in the same browser action within the framework. The BACK action is the most fundamental action for the back rules (and in an ideal world, would be the only back rule action), whereas DUPLICATE and REPEAT are meta-actions: they act on actions performed earlier on the browser. DUPLICATE is well suited for toggling filter options: many web pages contain filters that can be toggled on and off by clicking on them repeatedly. In a navigation rule such filters can be toggled on; the DUPLICATE back rule will then toggle them off, returning the browser to the state it was in before the navigation action took effect. REPEAT can be used in situations where BACK goes back further than intended, which can happen with sites that use Javascript navigation but fail to update the browser history correctly.
Each backward navigation rule may contain the following property:
2. wait: contains a wait block. Specifies that the framework must wait for a while after performing the browser action. See the sections on wait blocks for details.
Depending on the action, a backwards navigation rule may also contain the following properties:
3. url: string containing the URL of the web page to OPEN. Mandatory if the action is OPEN; ignored for all other actions.
4. xpathSelector: string containing an XPath expression for an item to CLICK on or HOVER over.
5. cssSelector: string containing a CSS selector for an item to CLICK on or HOVER over. Either xpathSelector or cssSelector must be present if the action is CLICK or HOVER; if both are present, xpathSelector is used and cssSelector is ignored. For actions other than CLICK or HOVER, both xpathSelector and cssSelector are ignored. Note that if xpathSelector or cssSelector selects more than one item on the page, the Framework only interacts with the first one. This is an important difference between (ordinary, “forward”) navigation rules and backwards navigation rules, because forward navigation rules interact with all items selected.
6. repeatAmount: the number of previous actions to repeat. Mandatory if the action is REPEAT, ignored for all other actions.
Example wait rule:
backRules: {
	goback: {
		action: “BACK”
	}
}
This backwards navigation rule simply mimics a user clicking the back button in the browser.
Second example:
 backRules: {
	undo-filters: {
		action: “CLICK”,
		cssSelector: “.removeAllFilters”
	}
}
In this example, the framework clicks on the item with class name “removeAllFilters”. Presumably this is a button on the page that disables all filters. Such buttons are often present in web shops which have Javascript-based filtering of articles.
[bookmark: _Toc424119683]Extraction Rules
The extractionRules object contains zero or more extraction rules blocks. Each extraction rules block consists of a single property within this object. The names of extraction rules blocks may be freely chosen by the user and define the extraction contexts associated with these extraction rules blocks. Each extraction rules block is a Javascript object; it must contain the following property:
1. cssSelector. String containing a CSS selector which selects the items on the page for which the Framework must extract data.
In addition, an extraction rules block contains one or more extraction rules as properties, with names that may be chosen freely by the user. These names define the column names of the output file in which the extracted data is stored. Each extraction rule is a Javascript object which must contain the following property:
1. operation: string containing the extraction operation carried out to extract the data. This may be either a standard extraction operation or a custom extraction operator. Custom extraction operations are described in more detail in the chapter on custom operations; the following standard operations are available:
a. extractXmlValue: extracts the text contained in the selected HTML tag, including the text contained in all descendant tags.
b. extractAttribute: extracts the value of the selected attribute.
2. cssSelector: string containing a CSS selector. This CSS selector should select a single HTML descendant tag for each of the HTML tags selected by the cssSelector in the extraction rules block. The extraction operation operates on this tag. If no cssSelector is present in the extraction rule, the tag selected is the HTML tags selected by the cssSelector in the extraction rules block instead.
3. Attribute: string containing the attribute name of the attribute selected from the currently selected tag (which, as described, has been selected by the cssSelector in either the extraction rule or the extraction rules block). This property is mandatory for the extractAttribute operation; it is ignored by the extractXmlValue operation.
Example extraction rules:
extractionRules: {
	overzicht: {
		cssSelector: “li.listingCell”,
		Description: {
cssSelector: “div.articleProperties>h2”,
operation: “extractXmlValue”
},
Price: {
	cssSelector: “span.currentPrice”,
	operation: “extractXmlValue”
}
Code: {
	attribute: “id”,
	operation: “extractAttribute”
}
}
}

In this example, all HTML tags with class name “listingCell” are selected; presumably these contain information about shop items on an overview page in a web shop. Three elements are extracted from each such tag:
· The contents of an <h2> tag which is a child of a <div> tag with class name “articleProperties”, which is a descendant of the tag selected; this is stored in the output file in a column named “Description”. Presumably, these <h2> tags contain a short description of the articles selected.
· The contents of a tag with class name “currentPrice”, which is a descendant of the tag selected. This is stored in the output file in a column named “Price”. Presumably this contains the price of the article.
· The contents of the “id” attribute of the tags selected. These are stored in the output file in a column named “Code”, and presumably contain article codes.
[bookmark: _Toc424119684]Custom operations
In this chapter we describe how a user of the Robot Framework can define custom operations to be carried out by the framework. We distinguish 4 different types of custom operation:
1. URL operations. These operations return a URL to be OPENed by a navigation rule;
2. Text operations. These operations return a text string to use as the value of a navigation variable
3. Extraction operations. These operations extract a piece of data from a page.
4. Wait operations. These operations wait for a while after a browser action has been performed, to give the browser time to reach a new state.
These operation types will be dealt with in this chapter, in the order presented here. But before that we will briefly describe some general features common to all custom operations.
[bookmark: _Toc424119685]Common features
Every custom operation is a Javascript function and must be a property of a custom operations object. This is possible since Javascript is a functional programming language, and one can therefore assign functions to variables or object properties. The Framework uses four custom operations objects, one for each operation type:
urlCallbacks: {
	generateHref: function(element, currentUrl, callback) {
		...
}	
},
textCallbacks: {
getImageDescription: function(element, callback) {
	...
}
},
extractionCallbacks: {
	extractArticleCode: function($, item, attrName) {
		...
}
},
waitCallbacks: {
	waitForElementBlink: function(args) {
		...
	}
}

In this example we defined four different custom operations, one for each type. For the purpose of this example we have omitted the function bodies. Each custom operation is an anonymous Javascript function (i.e., there’s no function name between the “function” keyword and the opening parenthesis). This is not mandatory: you may include a function name if you like to. Note that each function body is defined within the relevant custom operations block. This is also not mandatory: it is possible to define the function elsewhere in the Framework configuration file and only include the function name in the custom operations block. But we feel that doing things as shown in the example is best, as it shows the kind of operation for each custom operation most clearly.
The name of a custom operation can be chosen freely by the user, with the constraint that it may not be the same as the name of a standard operation of the same type.
Each custom operation has one or more arguments; these are the same for all custom operations of the same type. The arguments will be described in the next sections.
[bookmark: _Toc424119686]URL operations
The purpose of a URL operation is to generate a URL to OPEN in a navigation rule. URL operations take as input the currently selected element of the current HTML page, the URL of the current page and a callback function, and return the generated URL:

function(element, currentUrl, callback) {
	...
}	
A short description of the function arguments:
· element is a WebElement object from the selenium-webdriver package; see the package documentation for information about this object.
· currentUrl is a string containing the absolute URL of the current web page.
· callback is a function with a string as its sole argument; this string must contain the URL generated by this URL operation.
Since Javascript is an asynchronous language the generated URL cannot be simply returned to the caller via a return statement. Instead, the callback must be invoked with a string containing the URL as its only argument. This URL must be an absolute URL, so it may be necessary to convert a relative URL found on the web page to an absolute one.
Note that it is not necessary to actually use all the arguments in the function body. If, e.g., an URL operation generates a new URL by modifying the existing one (such as by increasing a page number by 1), then element is not used; this is simply a consequence of the fact that the interface of a URL operation is meant to include a large number of cases.
Example URL operation (this is the actual code for the standard URL operation “getHref”, so there is no need to have this as a custom operation):
urlCallbacks: {
	myGetHref: function(element, currentUrl, callback) {
		element.findAttribute(“href”).then(function(url) {
			callback(url.resolve(currentUrl, url));
});
}	
}

This callback first searches for an attribute called “href”, and then converts the contents of the href attribute (which should be a URL) to an absolute URL before calling the callback function.
As a second example, consider a URL operation that simply modifies the current URL:

urlCallbacks: {
	generateHref: function(element, currentUrl, callback) {
		var newUrl = currentUrl + “?page=1”;
		callback(newUrl);
}	
}

This takes the current URL, pastes “?page=1” to the end and returns the result.
[bookmark: _Toc424119687]Text operations
The purpose of a text operation is to generate the text content of a navigation variable. Text operations take as input the currently selected element of the current HTML page and a callback function:
function(element, callback) {
...
}
A short description of the function arguments:
· element is a WebElement object from the selenium-webdriver package; see the package documentation for information about this object.
· callback is a function with a string as its sole argument; this string must contain the text generated by this text operation.
As with the URL operation described in the previous paragraph, the generated text cannot be simply returned to the caller, due to the asynchronous nature of the Javascript programming language. Instead, the callback must be invoked, with the generated text as its sole argument.
Note that it is not strictly necessary to use the element argument in the function body: if you want, you can generate a text without any reference to the current HTML page.
Example text operation, in which the text is generated based on the contents of the “data-info” attribute[footnoteRef:5] of the current tag: [5: “data-“ attributes are new in HTML5]

textCallbacks: {
 getDataInfo: function(element, callback) {
 element.findAttribute(“data-info”).then(function(text) {
 callback(text);
 });
 }
}
[bookmark: _Toc424119688]Extraction operations
The purpose of a extraction operation is to extract some data from the currently selected tag and/or attribute of the current HTML page. Text operations take as input the parse tree of the current page, the currently selected tag and the currently selected attribute:
function($, item, attrName) {
	...
}
A short description of the function arguments:
· $ refers to the parse tree of the current web page. It is a cheerio object, see the cheerio package documentation for details. The somewhat odd-looking $ as variable name has its origin in the JQuery Javascript library, in which $ is used to refer to the current page.
· item denotes the currently selected HTML tag in the current web page.
· attrName denotes the currently selected attribute of the currently selected HTML tag (if any).
Note that, in contrast to the other custom operations, extraction operations do not have a callback argument. Instead, the resulting character string is simply returned to the caller. The reason for this is that the cheerio package is synchronous, whereas selenium-webdriver, which is used in the other custom operations, is asynchronous[footnoteRef:6]. [6: The reason we do not use selenium-webdriver for data extraction is that it is much too slow for extracting large numbers of separate data elements from a web page.]

If the tag and/or attribute specified cannot be found, the operation can return the special value “null” to signify missing data.
Note that it is not necessary to use all function arguments in the function body. In fact, the attrName argument can be omitted from the function header if the custom extraction operation does not extract data from an HTML attribute.
Example, in which an article code is extracted from an image URL (assume that the image URL is of the form http://www.examplewebshop.com/articles/sweater-darkgrey-897960):
extractionCallbacks: {
 extractArticleCode: function($, item, attrName) {
 var rawValue = $(item).attr(attrName);
	
 if (!rawValue) {
 return null;
 }
 var r = /([^-]*)-(\d*)$/;

 return r.exec(rawValue)[2];
 }
}
In this example, first the attribute is selected in the parse tree. If it does not exist, a null value is returned; otherwise the part of the URL containing the numerical code is selected using a regular expression and the result returned.
[bookmark: _Toc424119689]Wait operations
The purpose of a custom wait operation is to wait until a certain condition is fulfilled. Wait operations take as input the arguments specified by the user in a wait block:
function(args) {
	...
}
A short description of the function arguments:
· args: a Javascript object containing the wait arguments specified in the wait block. Each argument in the wait block is included in args as a separate object property, with the property name identical to the property name in the wait block.
While waiting is asynchronous in nature, no callback is provided. The reason for this is that a wait operation is supposed to return a selenium-webdriver promise, to be resolved once the conditions of the wait have been met. See the selenium-webdriver documentation for details.
As an example we provide the actual code for “sleep”, which is one of the standard wait operations:
waitCallbacks: {
 mySleep: function(args) {
 var duration = args.duration;
 return this._driver.sleep(duration);
 }
}
Note that this._driver is a Javascript object containing the selenium driver for the browser. It is available in custom wait operations for communications with the browser.

	

Robot Framework v4 User Manual 8
image1.emf

image2.emf

